Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Environ Res ; 252(Pt 3): 119034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701888

RESUMO

Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.

2.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643090

RESUMO

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Micobactérias não Tuberculosas , Resistência a Medicamentos , Internet
3.
Front Med (Lausanne) ; 11: 1376680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651058

RESUMO

Effective treatment of failed back surgery syndrome (FBSS) remains challenging despite urgent medical attention requirements. Depression is a contributing factor to the development and poor prognosis of FBSS, and vice versa. We report the case of a patient with FBSS and major depressive disorder (MDD) treated with graded exercise combined with motion-style acupuncture therapy (MSAT). A 53-year-old male veteran who had undergone lumbar discectomy and laminectomy with instrumented fusion was admitted to the hospital with re-current back pain and radiative pain in the left leg. The effects of failed surgery triggered MDD as a comorbidity. After a six-week routine treatment without remarkable improvement, a three-week program of graded exercise with MSAT was applied. The numeric rating scale (NRS) and short form-36 (SF-36) were used to assess low back pain with radiating leg pain, and daily functioning levels, respectively. The voluntary walking distance of the patients was measured. To analyze the therapeutic effects and other applications of the intervention, we surveyed clinical trials using MSAT or graded exercise therapy (GET). Three weeks of graded exercise with MSAT reduced physical and mental functional disabilities (SF-36, physical component: 15.0 to 37.2, mental component: 21.9 to 30.1) as well as the intensity of low back pain and/or radiative leg pain (NRS: 50 to 30). Furthermore, as the therapeutic intensity gradually increased, there was a significant corresponding increase in daily walking distance (mean daily walking distance, the first week vs. baseline, second, and third week, 3.05 ± 0.56: 2.07 ± 0.79, 4.27 ± 0.96, and 4.72 ± 1.04 km, p = 0.04, p = 0.02, and p = 0.003, respectively). Three randomized controlled trials of GET were included, all showing statistically significant antidepressant effects in the diseased population. Graded exercise with MSAT may be an effective rehabilitative therapy for patients with FBSS and MDD who have impaired daily routines.

5.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
Mol Ther ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38532628

RESUMO

The novel coronavirus disease 2019 has stimulated the rapid development of new biological therapeutics to inhibit SARS-CoV-2 infection; however, this remains a challenging task. In a previous study using structural analysis, we revealed that human cyclophilin A inhibits the entry of SARS-CoV-2 into host cells by interfering with the interaction of the receptor-binding domain of the spike protein with angiotensin-converting enzyme 2 on the host cell surface, highlighting its potential for antiviral therapy. For a comprehensive experimental validation, in this study, we verified the antiviral effects of human cyclophilin A against SARS-CoV-2, including its variants, using in vitro assays and experiments on an in vivo mouse model. Human cyclophilin A demonstrated a highly effective antiviral effect, with an 85% survival rate upon SARS-CoV-2 infection. It also reduced viral titers, inflammation in the lungs and brain, and cytokine release in the serum, suggesting a controlled immune response and potentially faster recovery. Overall, our study provides insights into the potential of human cyclophilin A as a therapeutic agent against SARS-CoV-2, which should guide future clinical trials that might provide an additional therapeutic option for patients.

8.
Front Cell Dev Biol ; 12: 1335636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544822

RESUMO

Mechanical properties of the tumor microenvironment play a critical role in cancer progression by activation of cancer mechano-responses. The biophysical interactions between cancer cells and their dynamic microenvironment are attributed to force-dependent alterations in molecular pathways that trigger the structural reorganization of intracellular organelles and their associated genetic modifications. Recent studies underscore the role of oxygen concentration in cancer metastasis. Suppressed oxygen levels promote the development of invasive phenotypes and aggressive proliferation of cancer cells, accompanied by remodeling of tumor microenvironment encompassing the modulation of physical settings of extracellular matrix. This review summarizes the role of biophysical interactions between cancer cells and their surroundings in determining cancer progression. Biophysical interpretation of the tumor microenvironment and cancer progression could provide further insights into the development of novel biomedical technologies for therapeutic cancer treatment.

9.
JAAD Int ; 15: 121-126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38545491

RESUMO

Background: The conventional 20% threshold for hair diameter diversity (HDD), widely accepted for diagnosing androgenetic alopecia (AGA) in the vertex area, has not quantitatively analyzed. Objective: To validate the HDD 20% threshold for AGA and develop a refined, Korean-specific criterion. Methods: This study involved 240 male patients with AGA, categorized by the V stages of the basic and specific classification. Phototrichogram images of the vertex region were analyzed using Image J software for hair thickness measurement. Results: Receiver operating characteristic curve analysis determined the 45 µm hair diameter threshold as the most diagnostic for AGA, with an area under the curve value of 0.884 and a Youden index of 0.659. Optimal AGA diagnosis was achieved when over 21% of hair had a diameter of ≤45 µm. Limitations: Restriction to Korean male limits its applicability to a broader population, and using a specific hair diameter threshold does not account for individual variations in hair characteristics. Conclusion: The study validates the conventional HDD 20% threshold and proposes a more appropriate 45 µm threshold for Korean males, beyond the 40 µm. It concludes that while the HDD 20% remains a key method for early detection of vertex AGA, the definition of thin hair should be ethnicity-specific.

10.
Cancer Res Treat ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38453275

RESUMO

Purpose: The role of allogeneic stem cell transplantation (alloSCT) in multiple myeloma (MM) treatment remains controversial. We conducted a retrospective, multicenter, nationwide study in Korea to evaluate the outcomes of alloSCT in Asian patients with MM. Materials and Methods: Overall, 109 patients with MM who underwent alloSCT between 2003 and 2020 were included in this study. Data were collected from the Korean Multiple Myeloma Working Party Registry. Results: The overall response rate and stringent complete response (sCR) plus CR rates were 67.0 and 46.8%, respectively, after alloSCT. At a median follow-up of 32.5 months, the 3-year probability of progression-free survival (PFS) and overall survival (OS) rates were 69.3 and 71.8%, respectively. The 3-year probabilities of OS rates in the upfront alloSCT, tandem auto-alloSCT, and later alloSCT groups were 75.0, 88.9, and 61.1%, respectively. Patients who achieved CR before or after alloSCT had significantly longer OS (89.8 vs. 18 months and 89.8 vs. 15.2 months, respectively). Even though patients who did not achieve CR prior to alloSCT, those who achieve CR after alloSCT had improved PFS and OS compared to those who had no achievement of CR both prior and after alloSCT. Patients who underwent alloSCT with 1-2 prior treatment lines had improved PFS (22.4 vs. 4.5 months) and OS (45.6 vs. 15.3 months) compared to those with three or more prior treatment lines. Conclusion: AlloSCT may be a promising therapeutic option especially for younger, chemosensitive patients with earlier implementation from relapse.

11.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339167

RESUMO

Hair luster is a key attribute of healthy hair and a crucial aspect of cosmetic appeal, reflecting the overall health and vitality of hair. Despite its significance, the advancement of therapeutic strategies for hair luster enhancement have been limited due to the absence of an effective experimental model. This study aimed to establish a novel animal model to assess hair gloss, employing ultraviolet (UV) irradiation on C57BL/6 mice. Specifically, UVB irradiation was meticulously applied to the shaved skin of these mice, simulating conditions that typically lead to hair luster loss in humans. The regrowth and characteristics of the hair were evaluated using a dual approach: an Investigator's Global Assessment (IGA) scale for subjective assessment and an image-based pixel-count method for objective quantification. These methods provided a comprehensive understanding of the changes in hair quality post-irradiation. To explore the potential reversibility of hair luster changes, oral minoxidil was administered, a treatment known for its effects on hair growth and texture. Further, to gain insights into the underlying biological mechanisms, bulk RNA transcriptomic analysis of skin tissue was conducted. This analysis revealed significant alterations in the expression of keratin-associated protein (KRTAP) genes, suggesting modifications in hair keratin crosslinking due to UV exposure. These changes are crucial in understanding the molecular dynamics affecting hair luster. The development of this new mouse model is a significant advancement in hair care research. It not only facilitates the evaluation of hair luster in a controlled setting but also opens avenues for the research and development of innovative therapeutic strategies. This model holds promise for the formulation of more effective hair care products and treatments, potentially revolutionizing the approach towards managing and enhancing hair luster.


Assuntos
Cabelo , Raios Ultravioleta , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Cabelo/efeitos da radiação , Alopecia , Pele , Modelos Animais de Doenças
12.
Nanoscale ; 16(11): 5613-5623, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412042

RESUMO

Modern silicone-based epidermal electronics engineered for body temperature sensing represent a pivotal development in the quest for advancing preventive medicine and enhancing post-surgical monitoring. While these compact and highly flexible electronics empower real-time monitoring in dynamic environments, a noteworthy limitation is the challenge in regulating the infiltration or obstruction of heat from the external environment into the surface layers of these electronics. The study presents a cost-effective temperature sensing solution by embedding wireless electronics in a multi-layered elastomeric composite to meet the dual needs of enhanced thermal insulation for encapsulation in contact with air and improved thermal conductivity for the substrate in contact with the skin. The encapsulating composite benefits from the inclusion of hollow silica microspheres, which reduce the thermal conductivity by 40%, while non-spherical aluminum nitride enhances the thermal conductivity of the substrate by 370%. The addition of particles to the respective composites inevitably leads to an increase in modulus. Two composite elements are engineered to coexist while maintaining a matching low modulus of 3.4 MPa and a stretchability exceeding 30%, all without compromising the optimized thermal properties. Consecutive thermal, electrical, and mechanical characterization confirms the sensor's capacity for precise body temperature monitoring during a single day's lifespan, while also assessing the influence of behavioral factors on body temperature.

13.
ACS Chem Neurosci ; 15(5): 1026-1041, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38387042

RESUMO

In consideration of the limited number of FDA-approved drugs for autism spectrum disorder (ASD), significant efforts have been devoted to identifying novel drug candidates. Among these, 5-HT7R modulators have garnered considerable attention due to their potential in alleviating autism-like behaviors in ASD animal models. In this study, we designed and synthesized biphenyl-3-ylmethylpyrrolidines 3 and biphenyl-3-yl-dihydroimidazoles 4 as 5-HT7R modulators. Through extensive biological tests of 3 and 4 in G protein and ß-arrestin signaling pathways of 5-HT7R, it was determined that 2-(2'-methoxy-[1,1'-biphenyl]-3-yl)-4,5-dihydro-1H-imidazole 4h acted as a 5-HT7R antagonist in both signaling pathways. In in vivo study with Shank3-/- transgenic (TG) mice, the self-grooming behavior test was performed with 4h, resulting in a significant reduction in the duration of self-grooming. In addition, an immunohistochemical experiment with 4h restored reduced neurogenesis in Shank3-/- TG mice, which is confirmed by the quantification of doublecortin (DCX) positive neurons, suggesting the promising therapeutic potential of 4h.


Assuntos
Transtorno do Espectro Autista , Compostos de Bifenilo , Animais , Camundongos , Serotonina , beta-Arrestinas , Transdução de Sinais , Camundongos Transgênicos , Proteínas de Ligação ao GTP , Modelos Animais de Doenças , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso
14.
Heliyon ; 10(1): e24121, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38283242

RESUMO

A new weaving technology using a modified z-binder interlacement system was designed to demonstrate its potential for the effective, continuous, efficient, and rapid manufacturing of various three-dimensional (3D) woven structures. First, three representative 3D woven preforms were fabricated. Then, epoxy resin was transferred to a preform. The manufactured 3D woven textile-reinforced composites were investigated using micro-CT analysis, tensile tests, and bending tests to study the effect of the z-binder interlacing on the structure. Furthermore, a design rule was established that could seamlessly create complex 3D woven structures with non-uniform heights in the z-direction, such as boxes, bowls, and pyramids, demonstrating that the seamless 3D woven preform of the complex shape can be fabricated with structural integrity.

15.
J Invest Dermatol ; 144(3): 612-620.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863387

RESUMO

Voltage-gated calcium channels regulate neuronal excitability. The Cav3.2 isoform of the T-type voltage-activated calcium channel is expressed in sensory neurons and is implicated in pain transmission. However, its role in itch remains unclear. In this study, we demonstrated that Cav3.2 is expressed by mechanosensory and peptidergic subsets of mouse dorsal root ganglion neurons and colocalized with TRPV1 and receptors for type 2 cytokines. Cav3.2-positive neurons innervate human skin. A deficiency of Cav3.2 reduces histamine, IL-4/IL-13, and TSLP-induced itch in mice. Cav3.2 channels were upregulated in the dorsal root ganglia of an atopic dermatitis (AD)-like mouse model and mediated neuronal excitability. Genetic knockout of Cav3.2 or T-type calcium channel blocker mibefradil treatment reduced spontaneous and mechanically induced scratching behaviors and skin inflammation in an AD-like mouse model. Substance P and vasoactive intestinal polypeptide levels were increased in the trigeminal ganglia from AD-like mouse model, and genetic ablation or pharmacological inhibition of Cav3.2 reduced their gene expression. Cav3.2 knockout also attenuated the pathologic changes in ex vivo skin explants cocultured with trigeminal ganglia neurons from AD-induced mice. Our study identifies the role of Cav3.2 in both histaminergic and nonhistaminergic acute itch. Cav3.2 channel also contributes to AD-related chronic itch and neuroinflammation.


Assuntos
Canais de Cálcio Tipo T , Dermatite Atópica , Camundongos , Humanos , Animais , Dermatite Atópica/metabolismo , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Prurido/metabolismo , Inflamação/metabolismo , Células Receptoras Sensoriais/metabolismo , Interleucina-13/metabolismo , Gânglios Espinais/metabolismo
17.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815865

RESUMO

BACKGROUNDPemphigus, a rare autoimmune bullous disease mediated by antidesmoglein autoantibodies, can be controlled with systemic medication like rituximab and high-dose systemic corticosteroids combined with immunosuppressants. However, some patients continue to experience chronically recurrent blisters in a specific area and require long-term maintenance systemic therapy.METHODSSkin with chronic blisters was obtained from patients with pemphigus. Immunologic properties of the skin were analyzed by immunofluorescence staining, bulk and single-cell RNA and TCR sequencing, and a highly multiplex imaging technique known as CO-Detection by indEXing (CODEX). Functional analyses were performed by flow cytometry and bulk RNA-Seq using peripheral blood from healthy donors. Intralesional corticosteroid was injected into patient skin, and changes in chronically recurrent blisters were observed.RESULTSWe demonstrated the presence of skin tertiary lymphoid structures (TLSs) with desmoglein-specific B cells in chronic blisters from patients with pemphigus. In the skin TLSs, CD4+ T cells predominantly produced CXCL13. These clonally expanded CXCL13+CD4+ T cells exhibited features of activated Th1-like cells and downregulated genes associated with T cell receptor-mediated signaling. Tregs are in direct contact with CXCL13+CD4+ memory T cells and increased CXCL13 production of CD4+ T cells through IL-2 consumption and TGF-ß stimulation. Finally, intralesional corticosteroid injection improved chronic blisters and reduced skin TLSs in patients with pemphigus.CONCLUSIONThrough this study we conclude that skin TLSs are associated with the persistence of chronically recurrent blisters in patients with pemphigus, and the microenvironmental network involving CXCL13+CD4+ T cells and Tregs within these structures plays an important role in CXCL13 production.TRIAL REGISTRATIONClinicalTrials.gov NCT04509570.FUNDINGThis work was supported by National Research Foundation of South Korea (NRF-2021R1C1C1007179) and Korea Drug Development Fund, which is funded by Ministry of Science and ICT; Ministry of Trade, Industry, and Energy; and Ministry of Health and Welfare (grant RS-2022-00165917).


Assuntos
Doenças Autoimunes , Pênfigo , Humanos , Corticosteroides , Autoanticorpos , Doenças Autoimunes/tratamento farmacológico , Vesícula/tratamento farmacológico , Linfócitos T CD4-Positivos , Quimiocina CXCL13 , Desmogleína 3 , Pênfigo/tratamento farmacológico
18.
Angew Chem Int Ed Engl ; 62(46): e202312780, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37782249

RESUMO

This research explores the enantioselective hydrosulfonylation of various α,ß-unsaturated carbonyl compounds via the use of visible light and redox-active chiral Ni-catalysis, facilitating the synthesis of enantioenriched α-chiral sulfones with remarkable enantioselectivity (exceeding 99 % ee). A significant challenge entails enhancing the reactivity between chiral metal-coordinated carbonyl compounds and moderate electrophilic sulfonyl radicals, aiming to minimize the background reactions. The success of our approach stems from two distinctive attributes: 1) the Cl-atom abstraction employed for sulfonyl radical generation from sulfonyl chlorides, and 2) the single-electron reduction to produce a key enolate radical Ni-complex. The latter process appears to enhance the feasibility of the sulfonyl radical's addition to the electron-rich enolate radical. An in-depth investigation into the reaction mechanism, supported by both experimental observations and theoretical analysis, offers insight into the intricate reaction process. Moreover, the versatility of our methodology is highlighted through its successful application in the late-stage functionalization of complex bioactive molecules, demonstrating its practicality as a strategy for producing α-chiral sulfones.

19.
Front Plant Sci ; 14: 1209860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799560

RESUMO

Rice is the major source of arsenic (As) intake in humans, as this staple crop readily accumulates As in the grain. Identifying the genes and molecular mechanisms underlying As accumulation and tolerance is a crucial step toward developing rice with reduced As levels. We identified 25 rice genes that improve As tolerance in yeast cells by expressing a complementary DNA (cDNA) library generated from As-treated rice roots. Among them, a zinc finger-type transcription factor VASCULAR PLANT ONE- ZINC FINGER 1 (OsVOZ1) (OsVOZ1) conferred the most pronounced As tolerance. OsVOZ1 inhibits As accumulation in yeast via activation of As efflux transporter Acr3p by post-transcriptional modification in yeast. The Arabidopsis voz1 voz2 double-knockout mutant exhibited As hypersensitivity, altered As concentrations in various tissues, and reduced As transport activity via the phloem. Arabidopsis and rice VOZs were highly expressed in phloem cells in various tissues, which are critical for As distribution in plant tissues. The double-knockdown and single-knockout plants of OsVOZ1 and OsVOZ2 reduced As accumulation in their seeds. These findings suggest that rice and Arabidopsis VOZs regulate the translocation of As into tissues by regulating the phloem loading of this element.

20.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686699

RESUMO

This study aimed to compare the treatment outcomes of atezolizumab-plus-bevacizumab (Ate/Bev) therapy with those of transarterial chemoembolization plus radiotherapy (TACE + RT) in hepatocellular carcinoma (HCC) patients with portal vein tumor thrombosis (PVTT) and without metastasis. Between June 2016 and October 2022, we consecutively enrolled 855 HCC patients with PVTT. After excluding 758 patients, 97 patients (n = 37 in the Ate/Bev group; n = 60 in the TACE + RT group) were analyzed. The two groups showed no significant differences in baseline characteristics and had similar objective response and disease control rates. However, the Ate/Bev group showed a significantly higher one-year survival rate (p = 0.041) compared to the TACE + RT group, which was constantly displayed in patients with extensive HCC burden. Meanwhile, the clinical outcomes were comparable between the two groups in patients with unilobar intrahepatic HCC. In Cox-regression analysis, Ate/Bev treatment emerged as a significant factor for better one-year survival (p = 0.049). Finally, in propensity-score matching, the Ate/Bev group demonstrated a better one-year survival (p = 0.02) and PFS (p = 0.01) than the TACE + RT group. In conclusion, Ate/Bev treatment demonstrated superior clinical outcomes compared to TACE + RT treatment in HCC patients with PVTT. Meanwhile, in patients with unilobar intrahepatic HCC, TACE + RT could also be considered as an alternative treatment option alongside Ate/Bev therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...