Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3998, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734704

RESUMO

Symmetry-protected band degeneracy, coupled with a magnetic order, is the key to realizing novel magnetoelectric phenomena in topological magnets. While the spin-polarized nodal states have been identified to introduce extremely-sensitive electronic responses to the magnetic states, their possible role in determining magnetic ground states has remained elusive. Here, taking external pressure as a control knob, we show that a metal-insulator transition, a spin-reorientation transition, and a structural modification occur concomitantly when the nodal-line state crosses the Fermi level in a ferrimagnetic semiconductor Mn3Si2Te6. These unique pressure-driven magnetic and electronic transitions, associated with the dome-shaped Tc variation up to nearly room temperature, originate from the interplay between the spin-orbit coupling of the nodal-line state and magnetic frustration of localized spins. Our findings highlight that the nodal-line states, isolated from other trivial states, can facilitate strongly tunable magnetic properties in topological magnets.

2.
Adv Sci (Weinh) ; : e2308177, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605671

RESUMO

Electride possesses electrons localized at interstitial sites without attracting nuclei. It brings outstanding material properties not only originating from its own loosely bounded characteristics but also serving as a quasiatom, which even chemically interacts with other elemental ions. In elemental metals, electride transitions have been reported in alkali metals where valence electrons can easily gain enough kinetic energy to escape nuclei. However, there are few studies on transition metals. Especially iron, the key element of human technology and geophysics, has not been studied in respect of electride formation. In this study, it is demonstrated that electride formation drives the superionic state in iron hydride under high-pressure conditions of the earth's inner core. The electride stabilizes the iron lattice and provides a pathway for hydrogen diffusion by severing the direct interaction between the metal and the volatile element. The coupling between lattice stability and superionicity is triggered near 100 GPa and enhanced at higher pressures. It is shown that the electride-driven superionicity can also be generalized for metal electrides and other rocky planetary cores by providing a fundamental interaction between the electride of the parent metal and doped light elements.

3.
Sci Bull (Beijing) ; 68(14): 1567-1573, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37355390

RESUMO

Iron hydride in Earth's interior can be formed by the reaction between hydrous minerals (water) and iron. Studying iron hydride improves our understanding of hydrogen transportation in Earth's interior. Our high-pressure experiments found that face-centered cubic (fcc) FeHx (x ≤ 1) is stable up to 165 GPa, and our ab initio molecular dynamics simulations predicted that fcc FeHx transforms to a superionic state under lower mantle conditions. In the superionic state, H-ions in fcc FeH become highly diffusive-like fluids with a high diffusion coefficient of ∼3.7 × 10-4 cm2 s-1, which is comparable to that in the liquid Fe-H phase. The densities and melting temperatures of fcc FeHx were systematically calculated. Similar to superionic ice, the extra entropy of diffusive H-ions increases the melting temperature of fcc FeH. The wide stability field of fcc FeH enables hydrogen transport into the outer core to create a potential hydrogen reservoir in Earth's interior, leaving oxygen-rich patches (ORP) above the core mantle boundary (CMB).

4.
J Phys Chem Lett ; 14(16): 3884-3890, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071052

RESUMO

Earth's inner core (IC) consists of mainly iron with some light elements. Understanding its structure and related physical properties has been elusive as a result of its required extremely high pressure and temperature conditions. The phase of iron, elastic anisotropy, and density-velocity deficit at the IC have long been questions of great interest. Here, we find that the electron correlation effect is enhanced by oxygen and modifies several important features, including the stability of iron oxides. Oxygen atoms energetically stabilize hexagonal-structured iron at IC conditions and induce elastic anisotropy. Electrical resistivity is much enhanced in comparison to pure hexagonal close-packed (hcp) iron as a result of the enhanced electron correlation effect, supporting the conventional thermal convection model. Moreover, our calculated seismic velocity shows a quantitative match with geologically observed preliminary reference Earth model (PREM) data. We suggest that oxygen is the essential light element to understand and model Earth's IC.

5.
Nat Commun ; 14(1): 1656, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964155

RESUMO

Seismological observations suggest that Earth's inner core (IC) is heterogeneous and anisotropic. Increasing seismological observations make the understanding of the mineralogy and mechanism for the complex IC texture extremely challenging, and the driving force for the anisotropic texture remains unclear. Under IC conditions, hydrogen becomes highly diffusive like liquid in the hexagonal-close-packed (hcp) solid Fe lattice, which is known as the superionic state. Here, we reveal that H-ion diffusion in superionic Fe-H alloy is anisotropic with the lowest barrier energy along the c-axis. In the presence of an external electric field, the alignment of the Fe-H lattice with the c-axis pointing to the field direction is energetically favorable. Due to this effect, Fe-H alloys are aligned with the c-axis parallel to the equatorial plane by the diffusion of the north-south dipole geomagnetic field into the inner core. The aligned texture driven by the geomagnetic field presents significant seismic anisotropy, which explains the anisotropic seismic velocities in the IC, suggesting a strong coupling between the IC structure and geomagnetic field.

6.
Sci Rep ; 13(1): 2898, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36801928

RESUMO

Noble gases possess extremely low reactivity because their valence shells are closed. However, previous studies have suggested that these gases can form molecules when they combine with other elements with high electron affinity, such as fluorine. Radon is a naturally occurring radioactive noble gas, and the formation of radon-fluorine molecules is of significant interest owing to its potential application in future technologies that address environmental radioactivity. Nevertheless, because all isotopes of radon are radioactive and the longest radon half-life is only 3.82 days, experiments on radon chemistry have been limited. Here, we study the formation of radon molecules using first-principles calculations; additionally, possible compositions of radon fluorides are predicted using a crystal structure prediction approach. Similar to xenon fluorides, di-, tetra-, and hexafluorides are found to be stabilized. Coupled-cluster calculations reveal that RnF6 stabilizes with Oh point symmetry, unlike XeF6 with C3v symmetry. Moreover, we provide the vibrational spectra of our predicted radon fluorides as a reference. The molecular stability of radon di-, tetra-, and hexafluoride obtained through calculations may lead to advances in radon chemistry.

7.
Nature ; 602(7896): 258-262, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140389

RESUMO

Earth's inner core (IC) is less dense than pure iron, indicating the existence of light elements within it1. Silicon, sulfur, carbon, oxygen and hydrogen have been suggested to be the candidates2,3, and the properties of iron-light-element alloys have been studied to constrain the IC composition4-19. Light elements have a substantial influence on the seismic velocities4-13, the melting temperatures14-17 and the thermal conductivities18,19 of iron alloys. However, the state of the light elements in the IC is rarely considered. Here, using ab initio molecular dynamics simulations, we find that hydrogen, oxygen and carbon in hexagonal close-packed iron transform to a superionic state under the IC conditions, showing high diffusion coefficients like a liquid. This suggests that the IC can be in a superionic state rather than a normal solid state. The liquid-like light elements lead to a substantial reduction in the seismic velocities, which approach the seismological observations of the IC20,21. The substantial decrease in shear-wave velocity provides an explanation for the soft IC21. In addition, the light-element convection has a potential influence on the IC seismological structure and magnetic field.

8.
Phys Rev Lett ; 126(3): 036402, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543962

RESUMO

Metallization of hydrogen as a key problem in modern physics is the pressure-induced evolution of the hydrogen electronic band from a wide-gap insulator to a closed gap metal. However, due to its remarkably high energy, the electronic band gap of insulating hydrogen has never before been directly observed under pressure. Using high-brilliance, high-energy synchrotron radiation, we developed an inelastic x-ray probe to yield the hydrogen electronic band information in situ under high pressures in a diamond-anvil cell. The dynamic structure factor of hydrogen was measured over a large energy range of 45 eV. The electronic band gap was found to decrease linearly from 10.9 to 6.57 eV, with an 8.6 times densification (ρ/ρ_{0}∼8.6) from zero pressure up to 90 GPa.

10.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265918

RESUMO

State prediction is not straightforward, particularly for complex systems that cannot provide sufficient amounts of training data. In particular, it is usually difficult to analyze some signal patterns for state prediction if they were observed in both normal and fault-states with a similar frequency or if they were rarely observed in any system state. In order to estimate the system status with imbalanced state data characterized insufficient fault occurrences, this paper proposes a state prediction method that employs discrete state vectors (DSVs) for pattern extraction and then applies a naïve Bayes classifier and Brier scores to interpolate untrained pattern information by using the trained ones probabilistically. Each Brier score is transformed into a more intuitive one, termed state prediction power (SPP). The SPP values represent the reliability of the system state prediction. A state prediction power map, which visualizes the DSVs and corresponding SPP values, is provided a more intuitive way of state prediction analysis. A case study using a car engine fault simulator was conducted to generate artificial engine knocking. The proposed method was evaluated using holdout cross-validation, defining specificity and sensitivity as indicators to represent state prediction success rates for no-fault and fault states, respectively. The results show that specificity and sensitivity are very high (equal to 1) for high limit values of SPP, but drop off dramatically for lower limit values.

11.
J Phys Chem Lett ; 11(9): 3390-3395, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251597

RESUMO

When compressed in a matrix of solid hydrogen, many metals form compounds with increasingly high hydrogen contents. At high density, hydrogenic sublattices can emerge, which may act as low-dimensional analogues of atomic hydrogen. We show that at high pressures and temperatures, ruthenium forms polyhydride species that exhibit intriguing hydrogen substructures with counterintuitive electronic properties. Ru3H8 is synthesized from RuH in H2 at 50 GPa and at temperatures in excess of 1000 K, adopting a cubic structure with short H-H distances. When synthesis pressures are increased above 85 GPa, we observe RuH4 which crystallizes in a remarkable structure containing corner-sharing H6 octahedra. Calculations indicate this phase is semimetallic at 100 GPa.

12.
Sci Adv ; 6(3): eaay8912, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010775

RESUMO

In spintronics, two-dimensional van der Waals crystals constitute a most promising material class for long-distance spin transport or effective spin manipulation at room temperature. To realize all-vdW-material-based spintronic devices, however, vdW materials with itinerant ferromagnetism at room temperature are needed for spin current generation and thereby serve as an effective spin source. We report theoretical design and experimental realization of a iron-based vdW material, Fe4GeTe2, showing a nearly room temperature ferromagnetic order, together with a large magnetization and high conductivity. These properties are well retained even in cleaved crystals down to seven layers, with notable improvement in perpendicular magnetic anisotropy. Our findings highlight Fe4GeTe2 and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase T c in vdW ferromagnets by theory-guided material discovery.

13.
Sensors (Basel) ; 20(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979222

RESUMO

Car body parts are sometimes responsible for irritating noise caused by assembly defects. Typically, various types of noise are known to originate from within the interior trim panels of car doors. This noise is considered to be an important factor that degrades the emotional satisfaction of the driver of the car. This research suggests an in-process inspection system consisting of an inspection workstation and a noise detection method. The inspection workstation presses down the car door trim panel by using a pneumatic pusher while microphones record the acoustic signals directly above the door trim panel and on the four sides of the workstation. The collected signals are analyzed by the proposed noise detection method after applying noise reduction. The noise detection method determines the presence of irritating noise by using noise source localization in combination with the time difference of arrival method and the relative signal strengths. The performance of the in-process noise detection system was evaluated by conducting experiments on faulty and healthy car door trim panels.

14.
Sci Rep ; 9(1): 20253, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882982

RESUMO

Crystal structure prediction and in silico physical property observations guide experimental synthesis in high-pressure research. Here, we used magnesium carbides as a representative example of computational high-pressure studies. We predicted various compositions of Mg-C compounds up to 150 GPa and successfully reproduced previous experimental results. Interestingly, our proposed MgC2 at high pressure >7 GPa consists of extended carbon bonds, one-dimensional graphene layers, and Mg atomic layers, which provides a good platform to study superconductivity of metal intercalated graphene nano-ribbons. We found that this new phase of MgC2 could be recovered to ambient pressure and exhibited a strong electron-phonon coupling (EPC) strength of 0.6 whose corresponding superconductivity transition temperature reached 15 K. The EPC originated from the cooperation of the out-of-plane and the in-plane phonon modes. The geometry confinement and the hybridization between the Mg s and C pz orbitals significantly affect the coupling of phonon modes and electrons. These results show the importance of the high-pressure route to the synthesis of novel functional materials, which can promote the search for new phases of carbon-based superconductors.

15.
Natl Sci Rev ; 6(2): 239-246, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34691862

RESUMO

Lithium titanium oxide (Li4Ti5O12, LTO), a 'zero-strain' anode material for lithium-ion batteries, exhibits excellent cycling performance. However, its poor conductivity highly limits its applications. Here, the structural stability and conductivity of LTO were studied using in situ high-pressure measurements and first-principles calculations. LTO underwent a pressure-induced amorphization (PIA) at 26.9 GPa. The impedance spectroscopy revealed that the conductivity of LTO improved significantly after amorphization and that the conductivity of decompressed amorphous LTO increased by an order of magnitude compared with its starting phase. Furthermore, our calculations demonstrated that the different compressibility of the LiO6 and TiO6 octahedra in the structure was crucial for the PIA. The amorphous phase promotes Li+ diffusion and enhances its ionic conductivity by providing defects for ion migration. Our results not only provide an insight into the pressure depended structural properties of a spinel-like material, but also facilitate exploration of the interplay between PIA and conductivity.

16.
Nano Lett ; 18(8): 4748-4754, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29979881

RESUMO

Thermoelectric device is a promising next-generation energy solution owing to its capability to transform waste heat into useful electric energy, which can be realized in materials with high electric conductivities and low thermal conductivities. A recently synthesized silicon allotrope of Si24 features highly anisotropic crystal structure with nanometer-sized regular pores. Here, based on first-principles study without any empirical parameter we show that the slightly doped Si24 can provide an order-of-magnitude enhanced thermoelectric figure of merit at room temperature, compared with the cubic diamond phase of silicon. We ascribe the enhancement to the intrinsic nanostructure formed by the nanopore array, which effectively hinders heat conduction while electric conductivity is maintained. This can be a viable option to enhance the thermoelectric figure of merit without further forming an extrinsic nanostructure. In addition, we propose a practical strategy to further diminish the thermal conductivity without affecting electric conductivity by confining rattling guest atoms in the pores.

17.
Sensors (Basel) ; 18(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316731

RESUMO

Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user's subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated.

18.
RSC Adv ; 8(36): 20228-20233, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35541672

RESUMO

Due to its intriguing geometry, possessing an open-channel structure, Si24 demonstrates potential for storing and/or transporting Li/Na ions in rechargeable batteries. In this work, first-principles calculations were employed to investigate the phase stability and Li/Na storage and transport properties of the Si24 anode to evaluate its electrochemical performance for batteries. The intercalation of Li and Na into the Si24 structure could deliver a capacity of 159 mA h g-1 (Li4Si24 and Na4Si24), and the average intercalation potentials were 0.17 V (vs. Li) and 0.34 V (vs. Na). Moreover, the volume change of Si24 upon intercalation proved very small (0.09% for Li, 2.81% for Na), indicating its "zero-strain" properties with stable cycling performance. Li+ and Na+ can diffuse along the channels inside the Si24 structure with barrier energies of 0.14 and 0.80 eV respectively, and the ionic conductivity of Li2.66Si24 was calculated to be as high as 1.03 × 10-1 S cm-1 at 300 K. Our calculations indicate that the fast Li-ionic conductivity properties make the Si24 structure a novel anode material for both lithium and sodium ion batteries.

19.
Adv Sci (Weinh) ; 4(9): 1600453, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28932656

RESUMO

The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li2O3, LiO2, and LiO4. The LiO2 and LiO4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O8 phase, while Li2O3 inherits the local arrangements from ambient LiO2 and Li2O2 phases. These novel lithium oxides beyond the ambient Li2O, Li2O2, and LiO2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

20.
Proc Natl Acad Sci U S A ; 114(7): 1498-1501, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143928

RESUMO

The cycling of hydrogen influences the structure, composition, and stratification of Earth's interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO2H implies the separation of the oxygen and hydrogen cycles in the deep lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO2Hx Using a combination of theoretical simulations and high-pressure-temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we observed a compositional range of P phase of 0.39 < x < 0.81, corresponding to 19-61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our observations indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the deep lower mantle, thus differentiating the deep hydrogen and hydrous cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...