Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Technol ; 66(2): 266-278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628683

RESUMO

Antibiotic resistance (AR) is a complex, multifaceted global health issue that poses a serious threat to livestock, humans, and the surrounding environment. It entails several elements and numerous potential transmission routes and vehicles that contribute to its development and spread, making it a challenging issue to address. AR is regarded as an One Health issue, as it has been found that livestock, human, and environmental components, all three domains are interconnected, opening up channels for transmission of antibiotic resistant bacteria (ARB). AR has turned out to be a critical problem mainly because of the overuse and misuse of antibiotics, with the anticipation of 10 million annual AR-associated deaths by 2050. The fact that infectious diseases induced by ARB are no longer treatable with antibiotics foreshadows an uncertain future in the context of health care. Hence, the One Health approach should be emphasized to reduce the impact of AR on livestock, humans, and the environment, ensuring the longevity of the efficacy of both current and prospective antibiotics.

2.
J Anim Sci Technol ; 66(2): 438-441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628691

RESUMO

The Enterococcus faecium (E. faecium) strain AK_C_05 was isolated from cheonggukjang, the Korean traditional food, collected from a local market in South Korea. In this report, we presented the complete genome sequence of E. faecium strain AK_C_05. The genome of E. faecium strain AK_C_05 genome consisted of one circular chromosome (2,691,319 bp) with a guanine + cytosine (GC) content of 38.3% and one circular plasmid (177,732 bp) with a GC content of 35.48%. The Annotation results revealed 2,827 protein-coding sequences (CDSs), 18 rRNAs, and 68 tRNA genes. It possesses genes, which encodes enzymes such as alpha-galactosidase (EC 3.2.1.22), beta-glucosidase (EC 3.2.1.21) and alpha-L-arabinofuranosidase (EC 3.2.1.55) enabling efficient utilization of carbohydrates. Based on Clusters of Orthologous Groups analysis, E. faecium strain AK_C_05 showed specialization in carbohydrate transport and metabolism indicating the ability to generate energy using a variety of carbohydrates.

3.
J Microbiol ; 62(3): 217-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38662310

RESUMO

The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.


Assuntos
Bactérias , Rúmen , Animais , Rúmen/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bovinos/microbiologia , Ruminantes/microbiologia , Microbiota , Microbioma Gastrointestinal , Biodiversidade
4.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543864

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral infection causing acute and severe vesicular lesions in cattle and pigs, which has prompted global vaccination policies. This study presents a technique for enhancing antigen yield in SAT1 BOT and SAT3 ZIM by treatment with calcium chloride (CaCl2). We tested changes in cell viability in BHK-21 suspension cells treated with varying concentrations of CaCl2. The optimal CaCl2 concentration was determined based on antigen yield. The timing of CaCl2 supplementation relative to FMD virus inoculation was tested. Finally, the optimal medium for antigen production was identified. We observed a concentration-dependent decrease in BHK-21 cell viability at >7.5 mM CaCl2. A CaCl2 concentration of 3 mM yielded the most antigens. CaCl2 supplementation relative to FMD virus infection was optimal 2 h before or with viral inoculation. CD-BHK 21 medium supplemented with CaCl2 was the most productive medium. Specifically, SAT1 BOT and SAT3 ZIM showed improved antigen production in CD-BHK 21 medium with 3 mM CaCl2, while Provero-1 and Cellvento BHK-200 media showed no significant enhancement. Overall, CaCl2 supplementation enhanced FMD antigen productivity. This study provides a useful framework for enhancing antigen production efficiently in the FMD vaccine industry.

5.
Microbiol Spectr ; 12(1): e0133423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38019021

RESUMO

IMPORTANCE: Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.


Assuntos
Colite , Microbioma Gastrointestinal , Lactococcus , Suínos , Animais , Camundongos , Função da Barreira Intestinal , Inflamação , Colite/induzido quimicamente , Fezes , Modelos Animais de Doenças
6.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995286

RESUMO

MOTIVATION: Predicting protein structures with high accuracy is a critical challenge for the broad community of life sciences and industry. Despite progress made by deep neural networks like AlphaFold2, there is a need for further improvements in the quality of detailed structures, such as side-chains, along with protein backbone structures. RESULTS: Building upon the successes of AlphaFold2, the modifications we made include changing the losses of side-chain torsion angles and frame aligned point error, adding loss functions for side chain confidence and secondary structure prediction, and replacing template feature generation with a new alignment method based on conditional random fields. We also performed re-optimization by conformational space annealing using a molecular mechanics energy function which integrates the potential energies obtained from distogram and side-chain prediction. In the CASP15 blind test for single protein and domain modeling (109 domains), DeepFold ranked fourth among 132 groups with improvements in the details of the structure in terms of backbone, side-chain, and Molprobity. In terms of protein backbone accuracy, DeepFold achieved a median GDT-TS score of 88.64 compared with 85.88 of AlphaFold2. For TBM-easy/hard targets, DeepFold ranked at the top based on Z-scores for GDT-TS. This shows its practical value to the structural biology community, which demands highly accurate structures. In addition, a thorough analysis of 55 domains from 39 targets with publicly available structures indicates that DeepFold shows superior side-chain accuracy and Molprobity scores among the top-performing groups. AVAILABILITY AND IMPLEMENTATION: DeepFold tools are open-source software available at https://github.com/newtonjoo/deepfold.


Assuntos
Proteínas , Software , Conformação Proteica , Proteínas/química , Estrutura Secundária de Proteína , Dobramento de Proteína
7.
J Anim Sci Technol ; 65(4): 856-864, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37970497

RESUMO

There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.

8.
Front Vet Sci ; 10: 1226859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781285

RESUMO

Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a diminished number of protective bacteria in the vaginal flora. Instead, it is accompanied by a significant increase in facultative and strict anaerobes, including Gardnerella vaginalis (G. vaginalis). BV is one of the most common gynecological problems experienced by reproductive age-women. Because an ideal and standard animal model for human BV induced by G. vaginalis is still underdeveloped, the main objective of this study was to develop a mouse model for human BV induced by G. vaginalis to demonstrate the clinical attributes observed in BV patients. A total of 80 female ICR mice were randomly assigned to 4 groups and intravaginally inoculated with different doses of G. vaginalis: NC (uninfected negative control), PC1 (inoculated with 1 × 105 CFU of G. vaginalis), PC2 (inoculated with 1 × 106 CFU of G. vaginalis) and PC3 (inoculated with 1 × 107 CFU of G. vaginalis). The myeloperoxidase (MPO) activity and serum concentrations of cytokines (IL-1ß, IL-10) in mice administered with G. vaginalis were significantly higher than those of the control group. Gross lesion and histopathological analysis of reproductive tract of mice inoculated with G. vaginalis showed inflammation and higher epithelial cell exfoliation compared to the control group. In addition, vaginal swabs from the mice inoculated with G. vaginalis showed the presence of clue cells, which are a characteristic feature of human BV. Altogether, our results suggested that G. vaginalis is sufficient to generate comparable clinical attributes seen in patients with BV.

9.
Front Vet Sci ; 10: 1265689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808106

RESUMO

With the ban on antibiotics in the swine industry, the exploration of alternative options has highlighted phytobiotics as a promising substitute for antibiotic growth promoters, aiming to foster a more sustainable swine industry. Phytobiotics are non-nutritive natural bioactive components derived from plants that offer numerous health benefits. They exhibit antioxidative, antimicrobial, and anti-inflammatory effects. Phytobiotics can be utilized in various forms, including solid, dried, ground, or as extracts, either in crude or concentrated form. They are characterized by low residual levels, a lack of resistance development, and minimal adverse effects. These qualities make phytobiotics an attractive choice for enhancing health and productivity in swine, presenting them as a viable alternative to antibiotics. While there is a general understanding of the effects of phytobiotics, there is still a need for detailed information regarding their effectiveness and mechanisms of action in practical settings. Therefore, the purpose of this mini review was to summarize the current knowledge supporting the roles of phytobiotics and their proposed modes of action, with a specific focus on swine.

10.
Viruses ; 15(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37632010

RESUMO

African swine fever (ASF), a viral disease caused by the African swine fever virus (ASFV), is associated with high mortality rates in domestic pigs and wild boars. ASF has been spreading since its discovery in wild boars in Korea in October 2019. Genomic analyses have provided insights into the genetic diversity of the ASFV isolated from various regions, enabling a better understanding of the virus origin and transmission patterns. We conducted a genome analysis to evaluate the diversity and mutations of ASFV spreading among wild boars in Korea during 2019-2022. We compared the genomes of ASFV strains isolated from Korean wild boars and publicly available ASFV genomes. Genomic analysis revealed several single-nucleotide polymorphisms within multigene families (MGFs) 360-1La and 360-4L in Korean ASFV. MGF 360-1La and 360-4L variations were not observed in other ASFV strains, including those of genotype II. Finally, we partially analyzed MGFs 360-1La and 360-4L in ASFV-positive samples between 2019 and 2022, confirming the geographical distribution of the variants. Our findings can help identify new genetic markers for epidemiological ASFV analysis and provide essential information for effective disease management.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Prevalência , República da Coreia/epidemiologia , Sus scrofa
11.
Front Vet Sci ; 10: 1231072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533451

RESUMO

Non-digestible carbohydrates are an unavoidable component in a pig's diet, as all plant-based feeds contain different kinds of non-digestible carbohydrates. The major types of non-digestible carbohydrates include non-starch polysaccharides (such as cellulose, pectin, and hemicellulose), resistant starch, and non-digestible oligosaccharides (such as fructo-oligosaccharide and xylo-oligosaccharide). Non-digestible carbohydrates play a significant role in balancing the gut microbial ecology and overall health of the swine by promoting the production of short chain fatty acids. Although non-digestible carbohydrates are rich in energy, swine cannot extract this energy on their own due to the absence of enzymes required for their degradation. Instead, they rely on gut microbes to utilize these carbohydrates for energy production. Despite the importance of non-digestible carbohydrate degradation, limited studies have been conducted on the swine gut microbes involved in this process. While next-generation high-throughput sequencing has aided in understanding the microbial compositions of the swine gut, specific information regarding the bacteria involved in non-digestible carbohydrate degradation remains limited. Therefore, it is crucial to investigate and comprehend the bacteria responsible for the breakdown of non-digestible carbohydrates in the gut. In this mini review, we have discussed the major bacteria involved in the fermentation of different types of non-digestible carbohydrates in the large intestine of swine, shedding light on their potential roles and contributions to swine nutrition and health.

12.
J Anim Sci Technol ; 65(3): 679-682, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37332287

RESUMO

The Lactococcus taiwanensis strain K_LL004 was isolated from the gut of a grasshopper (Oxya chinensis sinuosa) collected from local farm in Korea. L. taiwanensis strain K_LL004 is the functional probiotic candidate with an ability to hydrolyse plant polysaccharides. The complete genome of the L. taiwanensis strain K_LL004 contains one circular chromosome (1,995,099 bp) with a guanine + cytosine (GC) content of 38.8%. Moreover, 1,929 Protein-coding sequence, 19 rRNA genes, and 62 tRNA genes were identified based on results of annotation. L. taiwanensis strain K_LL004 has a gene, which encodes hydrolytic enzymes such as beta-glucosidase and beta-xylosidase, that hydrolyzes plant polysaccharides.

13.
Front Vet Sci ; 10: 1140718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383354

RESUMO

Introduction: This study was conducted to evaluate the effects of Lacticaseibacillus casei (Lactobacillus casei) and Saccharomyces cerevisiae mixture on growth performance, hematological parameters, immunological responses, and gut microbiome in weaned pigs. Methods: A total of 300 crossbred pigs [(Landrace × Yorkshire] × Duroc; 8.87 ± 0.34 kg of average initial body weight [BW]; 4 weeks of age) were divided into two dietary treatments (15 pigs/pen, 10 replicates/treatment) using a randomized complete block design (block = BW): control (CON) and the effective microorganism (MEM). The CON was not treated, while the MEM was treated with the mixture of L. casei (1 × 107 CFU/mL) and S. cerevisiae (1 × 107 CFU/mL) at 3 mL/pig/day for 4 weeks via the drinking water supply. Two feces and one blood sample from the randomly selected pigs in each pen were collected on D1 and D28 after weaning. Pigs were individually weighed, and pen feed intakes were recorded to evaluate pig growth performance. For the gut microbiome analysis, 16S rRNA gene hypervariable regions (V5 to V6) were sequenced using the Illumina MiSeq platform, and Quantitative Insight into Microbial Ecology (QIIME) and Microbiome Helper pipeline were used for 16S rRNA gene sequence analysis. Results and Discussion: The daily weight gain and feed efficiency of MEM were significantly higher than those of CON (p < 0.001). There were no significant differences in hematological parameters and immune responses between CON and MEM. However, MEM had significantly lower Treponema genus, whereas significantly higher Lactobacillus and Roseburia genera compared to CON. Overall, our data showed that L. casei and S. cerevisiae mixture could promote growth performance through the modulation of gut microbiota in pigs. This study will help to understand the correlation between the growth performance and the gut microbiome.

14.
J Occup Health ; 65(1): e12413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347801

RESUMO

OBJECTIVE: This study aimed to quantitatively confirm the effects of dental specialists' work and stretching on musculoskeletal pain. METHODS: The pain pressure threshold was divided into five parts (neck, shoulder, trunk, lower back, and hand/arm) of the upper body and measured at 15 muscle trigger points. The pain pressure threshold before and after work was measured, and 30 min of stretching and rest were stipulated as an intervention. RESULTS: The pain pressure thresholds reduced significantly in all muscles after work (P < .05). In the stretching group, the pain pressure thresholds increased significantly in all muscles (P < .05). In particular, the iliocostalis lumborum (lower back), rhomboid (trunk), transverse carpal ligament (hand/arm), levator scapulae-superior angle (neck), and upper trapezius (shoulder) muscles showed the greatest decrease in pain pressure threshold after work and the greatest increase after stretching. CONCLUSIONS: Stretching helps immediately relieve musculoskeletal pain in dental professionals and can prevent and manage work-related musculoskeletal disorders.


Assuntos
Dor Musculoesquelética , Humanos , Dor Musculoesquelética/prevenção & controle , Músculo Esquelético , Limiar da Dor/fisiologia , Cervicalgia , Odontólogos
15.
Adv Sci (Weinh) ; 10(19): e2300659, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189211

RESUMO

Hardware neural networks with mechanical flexibility are promising next-generation computing systems for smart wearable electronics. Several studies have been conducted on flexible neural networks for practical applications; however, developing systems with complete synaptic plasticity for combinatorial optimization remains challenging. In this study, the metal-ion injection density is explored as a diffusive parameter of the conductive filament in organic memristors. Additionally, a flexible artificial synapse with bio-realistic synaptic plasticity is developed using organic memristors that have systematically engineered metal-ion injections, for the first time. In the proposed artificial synapse, short-term plasticity (STP), long-term plasticity, and homeostatic plasticity are independently achieved and are analogous to their biological counterparts. The time windows of the STP and homeostatic plasticity are controlled by the ion-injection density and electric-signal conditions, respectively. Moreover, stable capabilities for complex combinatorial optimization in the developed synapse arrays are demonstrated under spike-dependent operations. This effective concept for realizing flexible neuromorphic systems for complex combinatorial optimization is an essential building block for achieving a new paradigm of wearable smart electronics associated with artificial intelligent systems.

16.
J Anim Sci Technol ; 65(1): 175-182, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37093913

RESUMO

Antibiotics have been used in livestock production for not only treatment but also for increasing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the experiment.

17.
Infancy ; 28(3): 597-618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757022

RESUMO

Caregivers' touches that occur alongside words and utterances could aid in the detection of word/utterance boundaries and the mapping of word forms to word meanings. We examined changes in caregivers' use of touches with their speech directed to infants using a multimodal cross-sectional corpus of 35 Korean mother-child dyads across three age groups of infants (8, 14, and 27 months). We tested the hypothesis that caregivers' frequency and use of touches with speech change with infants' development. Results revealed that the frequency of word/utterance-touch alignment as well as word + touch co-occurrence is highest in speech addressed to the youngest group of infants. Thus, this study provides support for the hypothesis that caregivers' use of touch during dyadic interactions is sensitive to infants' age in a way similar to caregivers' use of speech alone and could provide cues useful to infants' language learning at critical points in early development.


Assuntos
Mães , Tato , Feminino , Humanos , Lactente , Estudos Transversais , Idioma , República da Coreia
18.
J Microbiol Biotechnol ; 33(1): 51-60, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36517072

RESUMO

The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.


Assuntos
Doenças Transmitidas por Alimentos , Microbiota , Animais , Suínos , Gado , Metagenoma , Galinhas , Doenças Transmitidas por Alimentos/microbiologia , Fezes/microbiologia
19.
Vaccines (Basel) ; 10(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891182

RESUMO

Foot-and-mouth disease (FMD) is an economically important and highly infectious viral disease, predominantly controlled by vaccination. The removal of non-structural proteins (NSPs) is very important in the process of FMD vaccine production, because vaccinated and naturally infected animals can be distinguished by the presence of NSP antibodies in the FMD serological surveillance. A previous study reported that 3AB protein, a representative of NSPs, was removed by chloroform treatment. Therefore, in this study, the causes of 3AB removal and factors affecting the effect of chloroform were investigated. As a result, the effectiveness of chloroform differed depending on the virus production medium and was eliminated by detergents. In addition, it was found that 3AB protein removal by chloroform is due to the transmembrane domain of the N-terminal region (59-76 amino acid domain). Further, industrial applicability was verified by applying the chloroform treatment process to scale-up FMD vaccine antigen production. A novel downstream process using ultrafiltration instead of polyethylene glycol precipitation for high-purity FMD vaccine antigen production was established. This result will contribute toward simplifying the conventional process of manufacturing FMD vaccine antigens and ultimately reducing the time and cost of vaccine production.

20.
Vaccines (Basel) ; 10(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632423

RESUMO

Foot-and-mouth disease (FMD) causes substantial economic losses in the livestock industry. The protective immunizing component of the FMD virus (FMDV) is a ribonucleoprotein particle with a sedimentation coefficient of 146S. Size-exclusion high-performance liquid chromatography (SE-HPLC) was introduced to replace sucrose density gradient ultracentrifugation (SDG), which is the gold standard for the quantification of FMDV 146S particles. SE-HPLC showed a pattern similar to that of SDG; however, the two methods resulted in different quantities for the same amount of 146S particles. This study aimed to identify the reason for this disparity and adjust the difference between the two methods by employing a standard material. While SE-HPLC displayed all the virus particles in the peak fraction by SDS-PAGE and Western blotting, the virus particles were widely dispersed in multiple fractions, including peak fractions in the SDG. To adjust the difference between the two methods, a stable surrogate virus, bovine enterovirus, was devised to draw a standard curve, and the gap was reduced to <10%. To our knowledge, this is the first report to provide experimental evidence on the difference between SDG and SE-HPLC for the quantification of FMDV particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...