Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(21): eadk4288, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787951

RESUMO

KTaO3 heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO3 thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO3 and KTaO3 thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO3-based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal-based oxides that lie beyond the capabilities of conventional methods.

2.
Adv Mater ; 34(8): e2101730, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34908193

RESUMO

Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (ξ) and electrical conductivity (σ), and an efficient spin injection across a transparent interface. Herein, single crystals of the van der Waals (vdW) topological semimetal WTe2  and vdW ferromagnet Fe3 GeTe2 are used to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ξ ≈ 4.6 and σ ≈ 2.25 × 105  Ω-1 m-1 for WTe2 . Moreover, the significantly reduced switching current density of 3.90 × 106 A cm-2 at 150 K is obtained, which is an order of magnitude smaller than those of conventional heavy-metal/ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.

3.
Nano Lett ; 21(24): 10469-10477, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881903

RESUMO

Stacking two-dimensional van der Waals (vdW) materials rotated with respect to each other show versatility for studying exotic quantum phenomena. In particular, anisotropic layered materials have great potential for such twistronics applications, providing high tunability. Here, we report anisotropic superconducting order parameters in twisted Bi2Sr2CaCu2O8+x (Bi-2212) vdW junctions with an atomically clean vdW interface, achieved using the microcleave-and-stack technique. The vdW junctions with twist angles of 0° and 90° showed the maximum Josephson coupling, comparable to that of intrinsic Josephson junctions. As the twist angle approaches 45°, Josephson coupling is suppressed, and eventually disappears at 45°. The observed twist angle dependence of the Josephson coupling can be explained quantitatively by theoretical calculation with the d-wave superconducting order parameter of Bi-2212 and finite tunneling incoherence of the junction. Our results revealed the anisotropic nature of Bi-2212 and provided a novel fabrication technique for vdW-based twistronics platforms compatible with air-sensitive vdW materials.

4.
ACS Appl Mater Interfaces ; 13(45): 54466-54475, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739229

RESUMO

Understanding metal-to-insulator phase transitions in solids has been a keystone not only for discovering novel physical phenomena in condensed matter physics but also for achieving scientific breakthroughs in materials science. In this work, we demonstrate that the transport properties (i.e., resistivity and transition temperature) in the metal-to-insulator transitions of perovskite nickelates are tunable via the epitaxial heterojunctions of LaNiO3 and NdNiO3 thin films. A mismatch in the oxygen coordination environment and interfacial octahedral coupling at the oxide heterointerface allows us to realize an exotic phase that is unattainable in the parent compound. With oxygen vacancy formation for strain accommodation, the topmost LaNiO3 layer in LaNiO3/NdNiO3 bilayer thin films is structurally engineered and it electrically undergoes a metal-to-insulator transition that does not appear in metallic LaNiO3. Modification of the NdNiO3 template layer thickness provides an additional knob for tailoring the tilting angles of corner-connected NiO6 octahedra and the linked transport characteristics further. Our approaches can be harnessed to tune physical properties in complex oxides and to realize exotic physical phenomena through oxide thin-film heterostructuring.

5.
Sci Adv ; 7(46): eabh2294, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767439

RESUMO

Strain-mediated magnetoelectric (ME) coupling in ferroelectric (FE)/ferromagnetic (FM) heterostructures offers a unique opportunity for both fundamental scientific research and low-power multifunctional devices. Relaxor-FEs, such as (1 − x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 (PMN-xPT), are ideal FE layer candidates because of their giant piezoelectricity. However, thin films of PMN-PT suffer from substrate clamping, which substantially reduces piezoelectric in-plane strains. Here, we demonstrate low-voltage ME coupling in an all-thin-film heterostructure that uses the anisotropic strains induced by the (011) orientation of PMN-PT. We completely remove PMN-PT films from their substrate and couple with FM Ni overlayers to create membrane PMN-PT/Ni heterostructures showing 90° Ni magnetization rotation with 3 V PMN-PT bias, much less than the bulk PMN-PT ~100-V requirement. Scanning transmission electron microscopy and phase-field simulations clarify the membrane response. These results provide a crucial step toward understanding the microstructural behavior of PMN-PT thin films for use in piezo-driven ME heterostructures.

6.
Nat Commun ; 12(1): 5019, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408136

RESUMO

Unrestricted integration of single-crystal oxide films on arbitrary substrates has been of great interest to exploit emerging phenomena from transition metal oxides for practical applications. Here, we demonstrate the release and transfer of a freestanding single-crystalline rutile oxide nanomembranes to serve as an epitaxial template for heterogeneous integration of correlated oxides on dissimilar substrates. By selective oxidation and dissolution of sacrificial VO2 buffer layers from TiO2/VO2/TiO2 by H2O2, millimeter-size TiO2 single-crystalline layers are integrated on silicon without any deterioration. After subsequent VO2 epitaxial growth on the transferred TiO2 nanomembranes, we create artificial single-crystalline oxide/Si heterostructures with excellent sharpness of metal-insulator transition ([Formula: see text] > 103) even in ultrathin (<10 nm) VO2 films that are not achievable via direct growth on Si. This discovery offers a synthetic strategy to release the new single-crystalline oxide nanomembranes and an integration scheme to exploit emergent functionality from epitaxial oxide heterostructures in mature silicon devices.

7.
Appl Microsc ; 51(1): 8, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106374

RESUMO

Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.

8.
Nat Commun ; 12(1): 2844, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990589

RESUMO

Discovery of two dimensional (2D) magnets, showing intrinsic ferromagnetic (FM) or antiferromagnetic (AFM) orders, has accelerated development of novel 2D spintronics, in which all the key components are made of van der Waals (vdW) materials and their heterostructures. High-performing and energy-efficient spin functionalities have been proposed, often relying on current-driven manipulation and detection of the spin states. In this regard, metallic vdW magnets are expected to have several advantages over the widely-studied insulating counterparts, but have not been much explored due to the lack of suitable materials. Here, we report tunable itinerant ferro- and antiferromagnetism in Co-doped Fe4GeTe2 utilizing the vdW interlayer coupling, extremely sensitive to the material composition. This leads to high TN antiferromagnetism of TN ~ 226 K in a bulk and ~210 K in 8 nm-thick nanoflakes, together with tunable magnetic anisotropy. The resulting spin configurations and orientations are sensitively controlled by doping, magnetic field, and thickness, which are effectively read out by electrical conduction. These findings manifest strong merits of metallic vdW magnets as an active component of vdW spintronic applications.

9.
Nat Commun ; 11(1): 4898, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994411

RESUMO

The emergence of a domain wall property that is forbidden by symmetry in bulk can offer unforeseen opportunities for nanoscale low-dimensional functionalities in ferroic materials. Here, we report that the piezoelectric response is greatly enhanced in the ferroelastic domain walls of centrosymmetric tungsten trioxide thin films due to a large strain gradient of 106 m-1, which exists over a rather wide width (~20 nm) of the wall. The interrelationship between the strain gradient, electric polarity, and the electromechanical property is scrutinized by detecting of the lattice distortion using atomic scale strain analysis, and also by detecting the depolarized electric field using differential phase contrast technique. We further demonstrate that the domain walls can be manipulated and aligned in specific directions deterministically using a scanning tip, which produces a surficial strain gradient. Our findings provide the comprehensive observation of a flexopiezoelectric phenomenon that is artificially controlled by externally induced strain gradients.

10.
Nat Commun ; 11(1): 1401, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179741

RESUMO

Heterogeneous interfaces exhibit the unique phenomena by the redistribution of charged species to equilibrate the chemical potentials. Despite recent studies on the electronic charge accumulation across chemically inert interfaces, the systematic research to investigate massive reconfiguration of charged ions has been limited in heterostructures with chemically reacting interfaces so far. Here, we demonstrate that a chemical potential mismatch controls oxygen ionic transport across TiO2/VO2 interfaces, and that this directional transport unprecedentedly stabilizes high-quality rutile TiO2 epitaxial films at the lowest temperature (≤ 150 °C) ever reported, at which rutile phase is difficult to be crystallized. Comprehensive characterizations reveal that this unconventional low-temperature epitaxy of rutile TiO2 phase is achieved by lowering the activation barrier by increasing the "effective" oxygen pressure through a facile ionic pathway from VO2-δ sacrificial templates. This discovery shows a robust control of defect-induced properties at oxide interfaces by the mismatch of thermodynamic driving force, and also suggests a strategy to overcome a kinetic barrier to phase stabilization at exceptionally low temperature.

11.
Sci Adv ; 6(3): eaay8912, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010775

RESUMO

In spintronics, two-dimensional van der Waals crystals constitute a most promising material class for long-distance spin transport or effective spin manipulation at room temperature. To realize all-vdW-material-based spintronic devices, however, vdW materials with itinerant ferromagnetism at room temperature are needed for spin current generation and thereby serve as an effective spin source. We report theoretical design and experimental realization of a iron-based vdW material, Fe4GeTe2, showing a nearly room temperature ferromagnetic order, together with a large magnetization and high conductivity. These properties are well retained even in cleaved crystals down to seven layers, with notable improvement in perpendicular magnetic anisotropy. Our findings highlight Fe4GeTe2 and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase T c in vdW ferromagnets by theory-guided material discovery.

12.
Sci Rep ; 9(1): 10590, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332250

RESUMO

Remarkable improvements in both structural and optical properties of wafer-scale hexagonal boron nitride (h-BN) films grown by metal-organic chemical vapor deposition (MOCVD) enabled by high-temperature post-growth annealing is presented. The enhanced crystallinity and homogeneity of the MOCVD-grown h-BN films grown at 1050 °C is attributed to the solid-state atomic rearrangement during the thermal annealing at 1600 °C. In addition, the appearance of the photoluminescence by excitonic transitions as well as enlarged optical band gap were observed for the post-annealed h-BN films as direct consequences of the microstructural improvement. The post-growth annealing is a very promising strategy to overcome limited crystallinity of h-BN films grown by typical MOCVD systems while maintaining their advantage of multiple wafer scalability for practical applications towards two-dimensional electronics and optoelectronics.

13.
ACS Appl Mater Interfaces ; 10(5): 4831-4837, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29327588

RESUMO

Transition-metal oxides (TMOs) with brownmillerite (BM) structures possess one-dimensional oxygen vacancy channels (OVCs), which play a key role in realizing high ionic conduction at low temperatures. The controllability of the vacancy channel orientation, thus, possesses a great potential for practical applications and would provide a better visualization of the diffusion pathways of ions in TMOs. In this study, the orientations of the OVCs in BM-SrFeO2.5 are stabilized along two crystallographic directions of the epitaxial thin films. The distinctively orientated phases are found to be highly stable and exhibit a considerable difference in their electronic structures and optical properties, which could be understood in terms of orbital anisotropy. The control of the OVC orientation further leads to modifications in the hydrogenation of the BM-SrFeO2.5 thin films. The results demonstrate a strong correlation between crystallographic orientations, electronic structures, and ionic motion in the BM structure.

14.
Nat Commun ; 9(1): 403, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374260

RESUMO

Topological defects in matter behave collectively to form highly non-trivial structures called topological textures that are characterised by conserved quantities such as the winding number. Here we show that an epitaxial ferroelectric square nanoplate of bismuth ferrite subjected to a large strain gradient (as much as 105 m-1) associated with misfit strain relaxation enables five discrete levels for the ferroelectric topological invariant of the entire system because of its peculiar radial quadrant domain texture and its inherent domain wall chirality. The total winding number of the topological texture can be configured from - 1 to 3 by selective non-local electric switching of the quadrant domains. By using angle-resolved piezoresponse force microscopy in conjunction with local winding number analysis, we directly identify the existence of vortices and anti-vortices, observe pair creation and annihilation and manipulate the net number of vortices. Our findings offer a useful concept for multi-level topological defect memory.

15.
Adv Mater ; 29(10)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28067958

RESUMO

A record-high, near-theoretical intrinsic magnetoelectric (ME) coupling of 7 V cm-1 Oe-1 is achieved in a heterostructure of piezoelectric Pb(Zr,Ti)O3 (PZT) film deposited on magnetostrictive Metglas (FeBSi). The anchor-like, nanostructured interface between PZT and Metglas, improved crystallinity of PZT by laser annealing, and optimum volume of crystalline PZT are found to be the key factors in realizing such a giant strain-mediated ME coupling.

16.
Nanoscale ; 8(14): 7443-8, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26601654

RESUMO

A piezoelectric composite containing the ferroelectric polar (Bi(Na0.8K0.2)0.5TiO3: f-BNKT) and the non-polar (0.94Bi(Na0.75K0.25)0.5TiO3-0.06BiAlO3: BNKT-BA) phases exhibits synergetic properties which combine the beneficial aspects of each phase, i.e., the high saturated polarization (Ps) of the polar phase and the low coercive field (Ec) of the non-polar phase. To understand the origin of such a fruitful outcome from this type of polar/non-polar heterophase structure, comprehensive studies are conducted, including transmission electron microscopy (TEM) and finite element method (FEM) analyses. The TEM results show that the polar/non-polar composite has a core/shell structure in which the polar phase (core) is surrounded by a non-polar phase (shell). In situ electrical biasing TEM experiments visualize that the ferroelectric domains in the polar core are aligned even under an electric field of ∼1 kV mm(-1), which is much lower than its intrinsic coercive field (∼3 kV mm(-1)). From the FEM analyses, we can find that the enhanced polarization of the polar phase is promoted by an additional internal field at the phase boundary which originates from the preferential polarization of the relaxor-like non-polar phase. From the present study, we conclude that the coherent interface between polar and non-polar phases is a key factor for understanding the enhanced piezoelectric properties of the composite.

17.
ACS Appl Mater Interfaces ; 6(20): 17481-8, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25259752

RESUMO

Highly conductive indium oxide films, electrically more conductive than commercial sputtered indium tin oxide films films, were deposited using a new liquid precursor Et2InN(SiMe3)2 and H2O by atomic layer deposition (ALD) at 225-250 °C. Film resistivity can be as low as 2.3 × 10(-4)-5.16 × 10(-5) Ω·cm (when deposited at 225-250 °C). Optical transparency of >80% at wavelengths of 400-700 nm was obtained for all the deposited films. A self-limiting ALD growth mode was found 0.7 Å/cycle at 175-250 °C. X-ray photoelectron spectroscopy depth profile analysis showed pure indium oxide thin film without carbon or any other impurity. The physical and chemical properties were systematically analyzed by transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, optical spectrometer, and hall measurement; it was found that the enhanced electrical conductivity is attributed to the oxygen deficient InOx phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...