Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 253: 116184, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452569

RESUMO

Direct electron transfer (DET) between an electrode and redox labels is feasible in electrochemical biosensors using small aptamer-aptamer sandwiches; however, its application is limited in biosensors that rely on larger antibody-antibody sandwiches. The development of sandwich-type biosensors utilizing DET is challenged by the scarcity of aptamer-aptamer sandwich pairs with high affinity in complex biological samples. Here, we introduce an electrochemical biosensor using an antibody-aptamer hybrid sandwich for detecting thrombin in human serum. The biosensor enables rapid DET through an antibody-aptamer hybrid configuration comprising (i) an antibody capture probe that provides high and specific affinity to the target in human serum, (ii) the target thrombin, and (iii) an aptamer detection probe that facilitates convenient terminal conjugation with long flexible spacer DNA and polylinker peptide containing multiple amine-reactive phenazine ethosulfate (arPES) redox labels, allowing the conjugated labels to easily approach the electrode. Rapid repeated DET using arPES-catalyzed NADH oxidation strongly enhanced the electrochemical signals. Properly sized spacer and polylinker provided low nonspecific adsorption of the aptamer probe conjugated with multiple arPESs and low interference with the binding of the aptamer probe. Methods for immobilizing thiol-terminated antibodies on Au electrodes were compared and optimized. The developed biosensor using the antibody-aptamer hybrid sandwich exhibited high sensitivity and selectivity in detecting thrombin, surpassing the limitations of an aptamer-aptamer sandwich owing to the low affinity of thrombin aptamers in human serum. The calculated detection limit of the biosensor was ∼1.5 pM in buffer and ∼2.7 nM in human serum.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , Trombina/metabolismo , Elétrons , Anticorpos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Oxirredução , Eletrodos , Limite de Detecção , Ouro
2.
Anal Sci ; 40(5): 853-861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246930

RESUMO

To minimize background interference in electrochemical enzymatic biosensors employing electron mediators, it is essential for the electrochemical oxidation of electroactive interfering species (ISs), such as ascorbic acid (AA), to proceed slowly, and for the redox reactions between electron mediators and ISs to occur at a low rate. In this study, we introduce a novel combination of a working electrode and an electron mediator that effectively mitigates interference effects. Compared to commonly used electrodes such as Au, glassy carbon, and indium tin oxide (ITO), boron-doped diamond (BDD) electrodes demonstrate significantly lower anodic current (i.e., lower background levels) in the presence of AA. Additionally, menadione (MD) exhibits notably slower reactivity with AA compared to other electron mediators such as Ru(NH3)63+, 4-amino-1-naphthol, and 1,4-naphthoquinone, primarily due to the lower formal potential of MD compared to AA. This synergistic combination of BDD electrode and MD is effectively applied in three biosensors: (i) glucose detection using electrochemical-enzymatic (EN) redox cycling, (ii) glucose detection using electrochemical-enzymatic-enzymatic (ENN) redox cycling, and (iii) lactate detection using ENN redox cycling. Our developed approach significantly outperforms the combination of ITO electrode and MD in minimizing IS interference. Glucose in artificial serum can be detected with detection limits of ~ 20 µM and ~ 3 µM in EN and ENN redox cycling, respectively. Furthermore, lactate in human serum can be detected with a detection limit of ~ 30 µM. This study demonstrates sensitive glucose and lactate detection with minimal interference, eliminating the need for (bio)chemical agents to remove interfering species.


Assuntos
Boro , Diamante , Técnicas Eletroquímicas , Eletrodos , Glucose , Ácido Láctico , Vitamina K 3 , Diamante/química , Vitamina K 3/química , Boro/química , Glucose/análise , Glucose/química , Ácido Láctico/análise , Ácido Láctico/química , Técnicas Biossensoriais , Elétrons , Humanos , Oxirredução
3.
Angew Chem Int Ed Engl ; 62(26): e202303460, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37086084

RESUMO

The selective electrochemical synthesis of 1H-indazoles and their N-oxides and the subsequent C-H functionalization of the 1H-indazole N-oxides are described. The electrochemical outcomes were determined by the nature of the cathode material. When a reticulated vitreous carbon cathode was used, a wide range of 1H-indazole N-oxides were selectively synthesized, and the electrosynthesis products were deoxygenated to N-heteroaromatics, owing to cathodic cleavage of the N-O bond via paired electrolysis, when a Zn cathode was used. The scope of this electrochemical protocol is broad, as both electron-rich and electron-poor substrates were tolerated. The potency of this electrochemical strategy was demonstrated through the late-stage functionalization of various bioactive molecules, making this reaction attractive for the synthesis of 1H-indazole derivatives for pharmaceutical research and development. Detailed mechanistic investigations involving electron paramagnetic resonance spectroscopy and cyclic voltammetry suggested a radical pathway featuring iminoxyl radicals. Owing to the rich reactivity of 1H-indazole N-oxides, diverse C-H functionalization reactions were performed. We demonstrated the synthetic utility of 1H-indazole N-oxides by synthesizing the pharmaceutical molecules lificiguat and YD (3); key intermediates for bendazac, benzydamine, norepinephrine/serotonin reuptake inhibitors, SAM-531, and gamendazole analogues; and a precursor for organic light-emitting diodes.


Assuntos
Indazóis , Óxidos , Indazóis/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Preparações Farmacêuticas
4.
J Mater Chem B ; 11(10): 2258-2265, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799139

RESUMO

An electron mediator with rapid dissolvability and high solubility in aqueous electrolyte solutions is essential for point-of-care testing based on mediated electrochemical detection. However, most ferrocenyl (Fc) compounds have slow dissolvability and poor solubility owing to high hydrophobicity of the Fc backbone. Moreover, many Fc compounds have poor stability and nonoptimal formal potential (). Herein, we present an Fc compound, Fc8m2c, which exhibits rapid dissolvability, high solubility, good stability, and moderate along with its high electron-mediation rate. The of Fc8m2c (0.17 V vs. Ag/AgCl) is tuned by two electron-withdrawing acyl substituents and eight electron-donating methyl substituents. Two pendant carboxylate groups of Fc8m2c allow for rapid dissolvability and high solubility (0.63 M in water), whereas full substitution in its two cyclopentadienyl ligands facilitates good chemical stability against decomposition in the presence of dissolved O2 and ambient light. A moderate enables the application of a potential of 0.07 V at which electrochemical background currents are low and also contributes toward resisting the decomposition of both Fc8m2c and Fc8m2c+. Fc8m2c provides a high electron-mediation rate constant (2.4 × 106 M-1 s-1) in glucose detection using glucose dehydrogenase. When Fc8m2c is applied to a glucose sensor, the calculated detection limit is ∼0.1 mM with a measurement period of 5 s. Considering that the normal concentration of glucose in serum is between 3.9 and 6.6 mM, the detection limit is sufficiently low. These results show that Fc8m2c is an excellent electron-mediator candidate for sensitive and rapid glucose detection.


Assuntos
Compostos Ferrosos , Glucose , Compostos Ferrosos/química , Glucose/química , Metalocenos , Solubilidade , Técnicas Eletroquímicas
5.
Anal Chem ; 94(4): 2163-2171, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043633

RESUMO

Direct electron transfer (DET) between a redox label and an electrode has been used for sensitive and selective sandwich-type detection without a wash step. However, applying DET is still highly challenging in protein detection, and a single redox label per probe is insufficient to obtain a high electrochemical signal. Here, we report a wash-free, sandwich-type detection of thrombin using DET and catalytic signal amplification of multiple redox labels. The detection scheme is based on (i) the redox label-catalyzed oxidation of a reductant, (ii) the conjugation of multiple redox labels per probe using a poly-linker, (iii) the low nonspecific adsorption of the conjugated poly-linker due to uncharged, reduced redox labels, and (iv) a facile DET using long, flexible poly-linker and spacer DNA. Amine-reactive phenazine ethosulfate and NADH were used as the redox label and reductant, respectively. N3-terminated polylysine was used as the poly-linker for the conjugation between an aptamer probe and multiple redox labels. Approximately 11 redox labels per probe and rapid catalytic NADH oxidation enable high signal amplification. Thrombin in urine could be detected without a wash step with a detection limit of ∼50 pM, which is practically promising for point-of-care testing of proteins.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Catálise , Técnicas Eletroquímicas , Eletrodos , Elétrons , Limite de Detecção , Oxirredução
6.
Adv Healthc Mater ; 11(2): e2101819, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706164

RESUMO

The commonly required properties of diffusive electron mediators for point-of-care testing are rapid dissolubility, high stability, and moderate formal potential in aqueous solutions. Inspired by nature, various quinone-containing electron mediators have been developed; however, satisfying all these requirements remains a challenge. Herein, a strategic design toward quinones incorporating sulfonated thioether and nitrogen-containing heteroarene moieties as solubilizing, stabilizing, and formal potential-modulating groups is reported. A systematic investigation reveals that di(thioether sulfonate)-substituted quinoline-1,4-dione (QLS) and quinoxaline-1,4-dione (QXS) display water solubilities of ≈1 m and are rapidly dissoluble. By finely balancing the electron-donating effect of the thioethers and the electron-withdrawing effect of the nitrogen atom, formal potentials suitable for electrochemical biosensors are achieved with QLS and QXS (-0.15 and -0.09 V vs Ag/AgCl, respectively, at pH 7.4). QLS is stable for >1 d in PBS (pH 7.4) and for 1 h in tris buffer (pH 9.0), which is sufficient for point-of-care testing. Furthermore, QLS, with its high electron mediation ability, is successfully used in biosensors for sensitive detection of glucose and parathyroid hormone, demonstrating detection limits of ≈0.3 × 10-3 m and ≈2 pg mL-1 , respectively. This strategy produces organic electron mediators exhibiting rapid dissolution and high stability, and will find broad application beyond quinone-based biosensors.


Assuntos
Técnicas Biossensoriais , Elétrons , Glucose , Glucose Oxidase/química , Sulfetos
7.
Biosens Bioelectron ; 197: 113773, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763152

RESUMO

Enzyme-induced seedless Ag deposition is useful for selective Ag deposition and subsequent electrochemical Ag oxidation; however, a washing step is required after the deposition and before the electrochemical oxidation as the enzyme substrate can be oxidized during the electrochemical oxidation. Here, we report a fast Ag deposition method using a redox enzyme and quinone substrate that does not require a washing step. We found that the quinone substrate is reduced by a redox enzyme label, which is later oxidized to its original form via the reduction of Ag+ to Ag. Moreover, the quinone substrate is not electrochemically oxidized during the electrochemical Ag oxidation. We selected one diaphorase and 1,4-naphthoquinone from among seven redox enzymes (four diaphorases and three glucose-oxidizing enzymes) and six quinones, respectively. We applied this Ag deposition method for the detection of thyroid-stimulating hormone (TSH) over a dynamic range from 100 fg/mL to 100 ng/mL and found that TSH could be detected at concentrations as low as approximately 100 fg/mL in artificial serum. Therefore, the Ag deposition strategy developed in this study exhibits promising potential for ultrasensitive clinical applications.


Assuntos
Técnicas Biossensoriais , Benzoquinonas , Técnicas Eletroquímicas , Oxirredução , Tireotropina
8.
Biosens Bioelectron ; 179: 113065, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33578116

RESUMO

Recombinase polymerase amplification (RPA) is considered one of the best amplification methods for realizing a miniaturized diagnostic instrument; however, it is notably challenging to obtain low detection limits in solid-phase RPA. To overcome these difficulties, we combined solid-phase RPA with electrochemical detection and used a new concentration combination of three primers (surface-bound forward primer, solution reverse primer, and an extremely low concentration of solution forward primer). When solid-phase RPA was performed on an indium tin oxide (ITO) electrode modified with a surface-bound forward primer in a solution containing a biotin-terminated solution reverse primer, an extremely low concentration of a solution forward primer, and a template DNA or genomic DNA for a target gene of hepatitis B virus (HBV), amplification occurred mainly in solution until all the solution forward primers were consumed. Subsequently, DNA amplicons produced in solution participated in solid-phase amplification involving surface-bound forward primer and solution reverse primer. Afterward, neutravidin-conjugated DT-diaphorase (DT-D) was attached to a biotin-terminated DNA amplicon on the ITO electrode. Finally, chronocoulometric charges were measured using electrochemical-enzymatic redox cycling involving the ITO electrode, 1,4-naphthoquinone, DT-D, and reduced ß-nicotinamide adenine dinucleotide. The detection limit for HBV was measured using microfabricated electrodes and was found to be approximately 0.1 fM. This proposed method demonstrated better amplification efficiency for HBV genomic DNA than solid-phase RPA without using additional solution primer and asymmetric solid-phase RPA.


Assuntos
Técnicas Biossensoriais , Hepatite B , DNA Viral/genética , Hepatite B/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Sensibilidade e Especificidade
9.
ACS Sens ; 6(3): 1305-1311, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33491444

RESUMO

The duplex detection of both total and active enzyme concentrations without interferences at a single working electrode is challenging, especially when two different assays are combined. It is also challenging to obtain two different redox-cycling reactions without interference. Here, we present a simple but sensitive combined assay that is based on two redox-cycling reactions using two incubation periods and applied potentials at a single electrode. The assay combines an immunoassay for the determination of the total enzyme (total prostate-specific antigen, tPSA) concentration with a protease assay for the determination of the active enzyme (free PSA, fPSA) concentration. The immunoassay label and fPSA that are affinity-bound to the electrode are used for high sensitivity and specificity in the protease assay as well as the immunoassay. In the immunoassay, electrochemical-enzymatic (EN) redox cycling involving ferrocenemethanol is obtained at 0.1 V versus Ag/AgCl without incubation before the proteolytically released 4-amino-1-naphthol is generated. In the protease assay, EN redox cycling involving 4-amino-1-naphthol is obtained at 0.0 V after 30 min of incubation without ferrocenemethanol electro-oxidation. The detection procedure is almost the same as common electrochemical sandwich-type immunoassays, although the two different assays are combined. The duplex detection in buffer and serum is highly interference-free, specific, and sensitive. The detection limits for tPSA and fPSA are approximately 10 and 1 pg/mL, respectively.


Assuntos
Neoplasias da Próstata , Eletrodos , Humanos , Imunoensaio , Masculino
10.
Angew Chem Int Ed Engl ; 59(50): 22419-22422, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32875647

RESUMO

Metal nanoparticle surfaces are used for peroxidase- and oxidase-like nanozymes but not for esterase-like nanozymes. It is challenging to obtain rapid catalytic hydrolysis on a metal surface and even more so without a catalytically labile substrate. Here, we report that metal nanoparticle surfaces rapidly catalyze non-redox ester hydrolysis in the presence of redox H3 N-BH3 (AB). Metal hydrides are readily generated on a Pt nanoparticle (PtNP) from AB, and as a result the PtNP becomes electron-rich, which might assist nucleophilic attack of H2 O on the carbonyl group of an ester. The nanozyme system based on PtNP, AB, and 4-aminonaphthalene-1-yl acetate provides an electrochemical signal-to-background ratio much higher than natural enzymes, due to the rapid ester hydrolysis and redox cycling involving the hydrolysis product. The nanozyme system is applied in a sensitive electrochemical immunosensor for thyroid-stimulating hormone detection. The calculated detection limit is approximately 0.3 pg mL-1 , which indicates the high sensitivity of the immunosensor using the PtNP nanozyme.


Assuntos
Amônia/química , Boranos/química , Ésteres/química , Nanopartículas Metálicas/química , Platina/química , Hormônios Tireóideos/análise , Técnicas Biossensoriais , Catálise , Técnicas Eletroquímicas , Hidrólise , Imunoensaio , Estrutura Molecular , Oxirredução , Propriedades de Superfície
11.
Anal Chem ; 92(5): 3932-3939, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32083468

RESUMO

Catalytic precipitation and subsequent electrochemical oxidation or reduction of a redox-active precipitate has been widely used in electrochemical biosensors. However, such biosensors often do not allow for low detection limits due to a low rate of precipitation, nonspecific precipitation, loose binding of the precipitate to the electrode surface, and insulating behavior of the precipitate within a normal potential window. Here, we report an ultrasensitive electrochemical immunosensor for parathyroid hormone (PTH) detection based on DT-diaphorase (DT-D)-catalyzed formation of an organic precipitate and electrochemical oxidation of the precipitate. In the present study we found that DT-D can be used as a catalytic label in precipitation-based affinity biosensors because DT-D catalyzes fast reduction of 3-(4,-5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to MTT-formazan precipitate; the MTT reduction does not occur in the absence of DT-D; and a high electrochemical signal is obtained at low potentials during electrodissolution of MTT-formazan precipitate. The immunosensor is fabricated using a silane copolymer-modified ITO electrode surface that is suitable for both efficient and strong adsorption of MTT-formazan precipitate. When the enzymatic MTT-formazan precipitation and subsequent MTT-formazan electrodissolution is applied to a sandwich-type immunosensor, PTH can be detected over a wide range of concentrations with a very low detection limit (∼1 pg/mL) in artificial serum. The measured concentrations of PTH in clinical serum samples showed high similarity with those obtained using a commercial instrument.


Assuntos
Técnicas Biossensoriais/métodos , Formazans/química , NAD(P)H Desidrogenase (Quinona)/química , Hormônio Paratireóideo/análise , Sais de Tetrazólio/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Humanos , Oxirredução , Hormônio Paratireóideo/sangue
12.
Anal Chem ; 91(12): 7894-7901, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31184125

RESUMO

Propagating cascade reactions based on two proteases are promising for obtaining high signal amplification. However, in many cases, biosensors that use cascade reactions do not have low detection limits because of the inherent slowness of proteolytic reactions. Here, we report a sensitive electrochemical immunosensor using a high-signal-amplification method that combines a propagating cascade reaction and a redox cycling reaction. The cascade reaction uses ecarin and prothrombin: the ecarin label proteolytically converts inactive prothrombin into active thrombin, which then proteolytically liberates electroactive p-aminophenol (AP) from an AP-conjugated peptide. The liberated AP is electrochemically oxidized to p-benzoquinone imine (QI), regenerated by the reduction of QI by NADH, and then electrochemically reoxidized. This electrochemical-chemical (EC) redox cycling reaction significantly increases the electrochemical signal. The developed immunosensor is also compared with an immunosensor that uses only a propagating cascade reaction and an immunosensor that uses a single proteolytic reaction and an EC redox cycling reaction. The detection limits for thyroid-stimulating hormone (TSH) obtained using the three immunosensors are 3 pg/mL, 2 ng/mL, and 4 ng/mL, respectively, indicating that the newly developed immunosensor is more sensitive than the other two. The measured concentrations of TSH in clinical serum are found to agree well with those determined using a commercial instrument.


Assuntos
Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Limite de Detecção , Tireotropina/análise , Benzoquinonas/química , Eletroquímica , Oxirredução
13.
ACS Sens ; 4(6): 1641-1647, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31188576

RESUMO

Enzymatically induced silver deposition and subsequent electrochemical oxidation have been widely used in electrochemical biosensors. However, this method is ineffective for producing highly enhanced silver deposition for use in ultrasensitive detection. Herein, we report a fast silver deposition method that simultaneously uses three signal amplification processes: (i) enzymatic amplification, (ii) chemical-chemical (CC) redox cycling, and (iii) chemical-enzymatic (CN) redox cycling. DT-diaphorase (DT-D) is used for enzymatic amplification to convert a nitroso compound, a species incapable of directly reducing Ag+ to an amine compound, which can directly reduce Ag+. NADH acts as a reducing agent for the indirect reduction of Ag+ via the two redox cycling processes. 4-Nitroso-1-naphthol is converted to 4-amino-1-naphthol (NH2-N) in the presence of DT-D. NH2-N initiates two redox cycling processes: NH2-N, along with Ag+ and NADH, are involved in the CC redox cycling, whereas NH2-N, along with Ag+, DT-D, and NADH, are involved in the CN redox cycling. Finally, the deposited silver is electrochemically oxidized to produce a signal. When this triple signal amplification strategy for fast silver deposition is applied to an electrochemical immunosensor for detecting parathyroid hormone (PTH), a detection limit as low as ∼100 fg/mL is obtained. The concentrations of PTH in clinical serum determined using the developed immunosensor are found to agree with those measured using a commercial instrument. Thus, the use of this strategy for fast silver deposition is highly promising for ultrasensitive electrochemical detection and biosensing applications.


Assuntos
Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Compostos Nitrosos/química , Hormônio Paratireóideo/sangue , Prata/química , 1-Naftilamina/análogos & derivados , Anticorpos Imobilizados/imunologia , Proteínas de Bactérias/química , Geobacillus stearothermophilus/enzimologia , Humanos , Limite de Detecção , NAD(P)H Desidrogenase (Quinona)/química , Oxirredução , Hormônio Paratireóideo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...