Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39065583

RESUMO

This study aimed to develop an effective oral formulation of semaglutide, a glucagon-like peptide-1 receptor agonist, using an organometallic phyllosilicate-based colonic delivery system. The core nanocomplex (AMP-Sema) of 3-aminopropyl-functionalized magnesium phyllosilicate (AMP) and semaglutide was prepared via electrostatic interactions. Subsequently, AMP-Sema was coated with a polymer showing pH-dependent solubility (Eudragit® S100) for preferential colonic delivery. The surface-coated nanoparticles (EAMP-Sema) showed a narrow size distribution, and the encapsulated semaglutide maintained its conformational stability. The pH-dependent drug release property of EAMP-Sema yielded around 20% and 62% drug release at pH 1.2 and 7.4, respectively. The nanoparticles exhibited significantly decreased size and surface charge at pH 7.4, which indicated the pH-dependent dissolution of the coating layer. Furthermore, EAMP-Sema effectively improved the membrane permeability and metabolic stability of semaglutide in the gastrointestinal tract. It protected the encapsulated drugs from proteolysis in simulated intestinal fluids and increased drug transport by 2.5-fold in Caco-2 cells. Consequently, orally administered EAMP-Sema (equivalent to 8 mg/kg of semaglutide) showed significant therapeutic benefits, yielding effective glycemic control and weight loss in high-fat diet/streptozotocin (40 mg/kg)-induced type 2 diabetic rats. These results demonstrate that EAMP-Sema could improve the efficacy of orally administered semaglutide by enhancing the GI stability and cellular uptake of protein drugs.

2.
Drug Deliv ; 30(1): 2183816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36880122

RESUMO

Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida , Preparações Farmacêuticas
3.
Drug Deliv ; 29(1): 1959-1970, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35762636

RESUMO

Conventional chemotherapy lacking target selectivity often leads to severe side effects, limiting the effectiveness of chemotherapy. Therefore, drug delivery systems ensuring both selective drug release and efficient intracellular uptake at the target sites are highly demanded in chemotherapy to improve the quality of life of patients with low toxicity. One of the effective approaches for tumor-selective drug delivery is the adoption of functional ligands that can interact with specific receptors overexpressed in malignant cancer cells. Various functional ligands including folic acid, hyaluronic acid, transferrin, peptides, and antibodies, have been extensively explored to develop tumor-selective drug delivery systems. Furthermore, cell-penetrating peptides or ligands for tight junction opening are also actively pursued to improve the intracellular trafficking of anticancer drugs. Sometimes, multiple ligands with different roles are used in combination to enhance the cellular uptake as well as target selectivity of anticancer drugs. In this review, the current status of various functional ligands applicable to improve the effectiveness of cancer chemotherapy is overviewed with a focus on their roles, characteristics, and preclinical/clinical applications.


Assuntos
Antineoplásicos , Qualidade de Vida , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA