Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000592

RESUMO

Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.


Assuntos
Folículo Piloso , Hidroxiprostaglandina Desidrogenases , Humanos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Derme/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Células Cultivadas , Via de Sinalização Wnt/efeitos dos fármacos , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Cicatrização/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia
2.
Chem Soc Rev ; 53(7): 3253-3272, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38369971

RESUMO

Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.


Assuntos
Lisossomos , Complexo de Endopeptidases do Proteassoma , Proteólise , Membrana Celular , Ubiquitina-Proteína Ligases
3.
Org Lett ; 25(50): 9008-9013, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38084750

RESUMO

This study presents a Pd(II)-catalyzed method for the ß-C(sp3)-H arylation of N-Cbz- or N-Fmoc-protected N-methyl alanines, providing ready access to building blocks for N-methylated peptide synthesis. For this transformation, the native carboxylate was exploited as the directing group, attributing its success to the use of a monoprotected amino-pyridine ligand. Its synthetic utility was demonstrated by facile generation of nine analogues of the naturally occurring N-methylated cyclic peptide cycloaspeptide A.


Assuntos
Alanina , Paládio , Catálise , Ácidos Carboxílicos , Peptídeos
4.
Anal Chem ; 95(38): 14413-14420, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37707799

RESUMO

Proteomics has played a central role in the identification of reliable disease biomarkers, which are the basis of precision medicine, a promising approach for tackling recalcitrant diseases such as cancer, that elude conventional treatments. Among proteomic methodologies, targeted proteomics employing stable isotope-labeled (SIL) internal standards is particularly suited for the clinical translation of biomarker information owing to its high throughput and accuracy in the quantitative analysis of patient-derived proteomes. Using SIL internal standards ensures the utmost level of confidence in detection and precision in targeted MS experiments. For successfully establishing assays based on targeted proteomics, it is crucial to secure broad coverage when selecting the SIL standard peptide panel. However, cysteinyl peptides have often been excluded because of cysteine's high chemical reactivity. To address this limitation, a new cysteine building block was developed by incorporating a sulfhydryl group configured with an S-carbamidomethyl group, which is commonly used in proteome sampling. This compound was found to be chemically stable and applicable to a variety of solid-phase peptide synthesis (SPPS) campaigns. Furthermore, a direct comparison of the synthesized SIL peptides and tryptic endogenous peptides demonstrated the potential utility of an SPPS flow based on the new cysteine building block for improving the success of targeted proteomic applications.


Assuntos
Cisteína , Proteômica , Humanos , Compostos de Sulfidrila , Bioensaio , Peptídeos , Proteoma
5.
J Med Chem ; 66(15): 10381-10412, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37489798

RESUMO

Because of the wide use of Fingolimod for the treatment of multiple sclerosis (MS) and its cardiovascular side effects such as bradycardia, second-generation sphingosine 1-phosphate receptor 1 (S1P1) agonist drugs for MS have been developed and approved by FDA. The issue of bradycardia is still present with the new drugs, however, which necessitates further exploration of S1P1 agonists with improved safety profiles for next-generation MS drugs. Herein, we report a tetrahydroisoquinoline or a benzo[c]azepine core-based S1P1 agonists such as 32 and 60 after systematic examination of hydrophilic groups and cores. We investigated the binding modes of our representative compounds and their molecular interactions with S1P1 employing recent S1P1 cryo-EM structures. Also, favorable ADME properties of our compounds were shown. Furthermore, in vivo efficacy of our compounds was clearly demonstrated with PLC and EAE studies. Also, the preliminary in vitro cardiovascular safety of our compound was verified with human iPSC-derived cardiomyocytes.


Assuntos
Esclerose Múltipla , Tetra-Hidroisoquinolinas , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Receptores de Esfingosina-1-Fosfato , Bradicardia/induzido quimicamente , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/uso terapêutico , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Tetra-Hidroisoquinolinas/uso terapêutico , Esfingosina/metabolismo
6.
Eur J Med Chem ; 259: 115592, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478559

RESUMO

SbnE is an essential enzyme for staphyloferrin B biosynthesis in Staphylococcus aureus. An earlier study showed that natural product baulamycin A has in vitro inhibitory activity against SbnE and antibacterial potency. A SAR study with analogues of baulamycin A was conducted to identify potent inhibitors of SbnE and/or effective antibiotics against MRSA. The results show that selected analogues, including 11, 18, 21, 24a, 24c, 24m and 24n, exhibit single-digit micromolar inhibitory potencies against SbnE (IC50s = 1.81-8.94 µM) and 11, 24m, 24n possess significant activities against both SbnE (IC50s = 4.12-6.12 µM) and bacteria (MICs = 4-32 µg/mL). Biological investigations revealed that these substances possess potent cell wall disruptive activities and that they inhibit siderophore production in MRSA. Among the selected analogues, 7 has excellent antibiotic activities both gram-positive and -negative bacteria (0.5-4 µg/mL). Moreover, these analogues significantly impede biofilm formation in a concentration-dependent manner. Taken together, the results of the investigation provide valuable insight into the nature of novel baulamycin A analogues that have potential efficacy against MRSA owing to their membrane damaging activity and/or inhibitory efficacy against siderophore production.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Sideróforos/farmacologia , Staphylococcus aureus
7.
ACS Infect Dis ; 9(3): 554-566, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753707

RESUMO

Concerns about antibiotic-resistant Gram-negative pathogens are escalating, and accordingly siderophore-based intracellular antibiotic delivery is attracting more attention as an effective means to overcome these infections. Despite the successful clinical translation of this strategy, the delivery potential of siderophores has been limited to periplasm targeting, and this has appreciably restricted the repertoire of applicable antibiotics. To overcome this shortcoming of the current technology, this study focused on investigating the capability of simple bidentate catechol analogs to function as vehicles for cytoplasmic antibiotic delivery. Specifically, by employing trimethoprim, an inhibitor of dihydrofolate reductase located in the cytoplasm, as a model antibiotic, a chemical library of chelator-antibiotic conjugates featuring four different catechol analogs was prepared. Then, their various pharmacological properties and antimicrobial activities were evaluated. Analysis of these characterization data led to the identification of the active conjugates exhibiting notable iron- and trimethoprim-dependent potency against Escherichia coli. Further characterization of these hit molecules using E. coli mutant strains revealed that 2,3-dihydroxybenzoate could effectively deliver several corresponding conjugates to the cytoplasm by exploiting the siderophore uptake machineries present across the outer and inner membranes, originally designated for the native siderophore of E. coli, enterobactin. Considering the synthetic simplicity, such a catechol analog could have appreciable usage in potentiating cytoplasm-active antibiotics against recalcitrant Gram-negative pathogens.


Assuntos
Antibacterianos , Sideróforos , Sideróforos/química , Antibacterianos/farmacologia , Antibacterianos/química , Trimetoprima/farmacologia , Escherichia coli , Catecóis/farmacologia , Citoplasma
8.
Chembiochem ; 23(21): e202200430, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36107027

RESUMO

Various bacterial species are capable of producing highly modified fatty acid derivatives with conjugated triple bonds, which play important ecological roles as antifungals and toxins in mutualistic and pathogenic interactions. Furthermore, the terminal polyyne moiety is of interest as pharmacophore and as tag in bioorthogonal chemistry and live imaging. To gain insight into the assembly of these highly reactive natural products, we investigated tetrayne (caryoynencin and protegencin) biosynthesis genes (cay and pgn) from Trinickia caryophylli and Pseudomonas protegens. Pathway dissection and reconstitution in the heterologous host Burkholderia graminis revealed the genes minimally required for polyyne formation. Mutational analyses and biochemical assays demonstrated that polyyne biosynthesis is thiotemplated, involving a fatty acyl-AMP ligase, a designated acyl carrier protein, and a thioesterase. Heterologous expression of point-mutated desaturase genes showed that three desaturases work synergistically to introduce four triple bonds. These findings point to an intricate desaturase complex and provide important information for future bioengineering experiments.


Assuntos
Bactérias , Ácidos Graxos , Ácidos Graxos/química , Bactérias/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Poli-Inos
9.
Angew Chem Int Ed Engl ; 61(26): e202203264, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416382

RESUMO

Caryoynencin is a toxic and antifungal fatty acid derivative produced by a number of plant-pathogenic and insect-protective bacteria (Trinickia caryophylli and Burkholderia spp.). In addition to the reactive tetrayne unit, the presence of an allylic alcohol moiety is critical for antimicrobial activities. By a combination of mutational analyses, heterologous expression and in vitro reconstitution experiments we show that the cytochrome P450 monooxygenase CayG catalyzes the complex transformation of a saturated carbon backbone into an allylic alcohol. Unexpectedly, CayG employs a ferritin-like protein (CayK) or a rubredoxin (CayL) component for electron transport. A desaturation-hydroxylation sequence was deduced from a time-course study and in vitro biotransformations with pathway intermediates, substrate analogues, protegencin congeners from Pseudomonas protegens Pf-5, and synthetic derivatives. This unusual multifunctional oxygenase may inspire future biocatalytic applications.


Assuntos
Sistema Enzimático do Citocromo P-450 , Propanóis , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Oxirredução
10.
mBio ; 12(5): e0224821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517755

RESUMO

The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites. IMPORTANCE Acinetobacter baumannii has acquired antibiotic resistance at an alarming rate, and it is becoming a serious threat to society, particularly due to the paucity of effective treatment options. Acinetobactin is a siderophore of Acinetobacter baumannii, responsible for active iron supply, and it serves as a key virulence factor to counter host nutritional immunity during infection. While two acinetobactin isomers were identified, their distinctive roles for successful infection of Acinetobacter baumannii remained unsettled. This study clearly identified the isomer containing an oxazoline core as the principal siderophore based on comparative analysis of the specificity of the acinetobactin uptake machinery, the stability of the corresponding iron complexes, and the iron scavenging activity against the host iron sequestering proteins. Our findings are anticipated to stimulate efforts to discover a potent antivirulence agent against Acinetobacter baumannii that exploits the acinetobactin-based iron assimilation mechanism.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Oxazóis/química , Oxazóis/metabolismo , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Ferro/metabolismo , Isomerismo , Sideróforos/química , Sideróforos/metabolismo
11.
J Med Chem ; 64(18): 13766-13779, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34519505

RESUMO

5-HT7R belongs to a family of G protein-coupled receptors and is associated with a variety of physiological processes in the central nervous system via the activation of the neurotransmitter serotonin (5-HT). To develop selective and biased 5-HT7R ligands, we designed and synthesized a series of pyrazolyl-diazepanes 2 and pyrazolyl-piperazines 3, which were evaluated for binding affinities to 5-HTR subtypes and functional selectivity for G protein and ß-arrestin signaling pathways of 5-HT7R. Among them, 1-(3-(3-chlorophenyl)-1H-pyrazol-4-yl)-1,4-diazepane 2c showed the best binding affinity for 5-HT7R and selectivity over other 5-HTR subtypes. It was also revealed as a G protein-biased antagonist. The self-grooming behavior test was performed with 2c in vivo with Shank3-/- transgenic (TG) mice, wherein 2c significantly reduced self-grooming duration time to the level of wild-type mice. The results suggest that 5-HT7R could be a potential therapeutic target for treating autism spectrum disorder stereotypy.


Assuntos
Transtorno Autístico/tratamento farmacológico , Pirazóis/uso terapêutico , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/uso terapêutico , Animais , Desenho de Fármacos , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Pirazóis/síntese química , Pirazóis/metabolismo , Receptores de Serotonina/química , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/metabolismo
12.
mBio ; 12(4): e0071521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340549

RESUMO

Natural products that possess alkyne or polyyne moieties have been isolated from a variety of biological sources and possess a broad a range of bioactivities. In bacteria, the basic biosynthesis of polyynes is known, but their biosynthetic gene cluster (BGC) distribution and evolutionary relationship to alkyne biosynthesis have not been addressed. Through comprehensive genomic and phylogenetic analyses, the distribution of alkyne biosynthesis gene cassettes throughout bacteria was explored, revealing evidence of multiple horizontal gene transfer events. After investigation of the evolutionary connection between alkyne and polyyne biosynthesis, a monophyletic clade was identified that possessed a conserved seven-gene cassette for polyyne biosynthesis that built upon the conserved three-gene cassette for alkyne biosynthesis. Further diversity mapping of the conserved polyyne gene cassette revealed a phylogenetic subclade for an uncharacterized polyyne BGC present in several Pseudomonas species, designated pgn. Pathway mutagenesis and high-resolution analytical chemistry showed the Pseudomonas protegens pgn BGC directed the biosynthesis of a novel polyyne, protegencin. Exploration of the biosynthetic logic behind polyyne production, through BGC mutagenesis and analytical chemistry, highlighted the essentiality of a triad of desaturase proteins and a thioesterase in both the P. protegens pgn and Trinickia caryophylli (formerly Burkholderia caryophylli) caryoynencin pathways. We have unified and expanded knowledge of polyyne diversity and uniquely demonstrated that alkyne and polyyne biosynthetic gene clusters are evolutionarily related and widely distributed within bacteria. The systematic mapping of conserved biosynthetic genes across the available bacterial genomic diversity proved to be a fruitful method for discovering new natural products and better understanding polyyne biosynthesis. IMPORTANCE Natural products bearing alkyne (triple carbon bond) or polyyne (multiple alternating single and triple carbon bonds) moieties exhibit a broad range of important biological activities. Polyyne metabolites have been implicated in important ecological roles such as cepacin mediating biological control of plant pathogens and caryoynencin protecting Lagriinae beetle eggs against pathogenic fungi. After further phylogenetic exploration of polyyne diversity, we identified a novel gene cluster in Pseudomonas bacteria with known biological control abilities and proved it was responsible for synthesizing a new polyyne metabolite, protegencin. The evolutionary analysis of polyyne pathways showed that multiple biosynthetic genes were conserved, and using mutagenesis, their essentiality was demonstrated. Our research provides a foundation for the future modification of polyyne metabolites and has identified a novel polyyne, protegencin, with potential bioactive roles of ecological and agricultural importance.


Assuntos
Vias Biossintéticas/genética , Família Multigênica , Filogenia , Poli-Inos/classificação , Poli-Inos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Evolução Molecular , Genoma Bacteriano , Genômica
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389682

RESUMO

Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.


Assuntos
Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Chlamydomonas reinhardtii/efeitos dos fármacos , Pseudomonas/metabolismo , Carotenoides , Técnicas de Cocultura , Genoma Bacteriano
14.
Chembiochem ; 22(19): 2901-2907, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232540

RESUMO

Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.


Assuntos
Agaricales/efeitos dos fármacos , Toxinas Bacterianas/análise , Imagem Molecular , Doenças das Plantas/induzido quimicamente , Agaricales/metabolismo , Antifúngicos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Burkholderia gladioli/efeitos dos fármacos , Burkholderia gladioli/metabolismo , Burkholderia gladioli/patogenicidade , Testes de Sensibilidade Microbiana
15.
Org Lett ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133175

RESUMO

The ability of fimsbactin B, a natural siderophore of Acinetobacter baumannii, to function as an antibiotic delivery vehicle was investigated by synthesizing three structurally diversified fimsbactin B-cefaclor conjugates. Their antimicrobial activities were Acinetobacter-selective and up to 128-fold more potent than that of cefaclor alone. This activity enhancement originated from the fimsbactin-B-dependent active uptake of cefaclor. Thus, fimsbactin-B-based antibiotic delivery can be an effective approach in combating antibiotic-resistant Acinetobacter infections.

16.
J Med Chem ; 64(11): 7453-7467, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34032427

RESUMO

There has been significant attention concerning the biased agonism of G protein-coupled receptors (GPCRs), and it has resulted in various pharmacological benefits. 5-HT7R belongs to a GPCR, and it is a promising pharmaceutical target for the treatment of neurodevelopmental and neuropsychiatric disorders. Based on our previous research, we synthesized a series of 6-chloro-2'-methoxy biphenyl derivatives 1, 2, and 3 with a variety of amine scaffolds. These compounds were evaluated for their binding affinities to 5-HTR subtypes and their functional selectivity toward the Gs protein and the ß-arrestin signaling pathways of 5-HT7R. Among them, 2-(6-chloro-2'-methoxy-[1,1'-biphenyl]-3-yl)-N-ethylethan-1-amine, 2b, was found to be a G-protein-biased ligand of 5-HT7R. In an in vivo study with Shank3 transgenic mice, the self-grooming behavior test was performed with 2b, which increased the duration of self-grooming. The experiments further suggested that 5-HT7R is associated with autism spectrum disorders (ASDs) and could be a therapeutic target for the treatment of stereotypy in ASDs.


Assuntos
Compostos de Bifenilo/química , Ligantes , Receptores de Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacologia , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microssomos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/química , Relação Estrutura-Atividade
17.
J Am Chem Soc ; 143(13): 5038-5043, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33784078

RESUMO

AprD4 is a radical S-adenosyl-l-methionine (SAM) enzyme catalyzing C3'-deoxygenation of paromamine to form 4'-oxo-lividamine. It is the only 1,2-diol dehydratase in the radical SAM enzyme superfamily that has been identified and characterized in vitro. The AprD4 catalyzed 1,2-diol dehydration is a key step in the biosynthesis of several C3'-deoxy-aminoglycosides. While the regiochemistry of the hydrogen atom abstraction catalyzed by AprD4 has been established, the mechanism of the subsequent chemical transformation remains not fully understood. To investigate the mechanism, several substrate analogues were synthesized and their fates upon incubation with AprD4 were analyzed. The results support a mechanism involving formation of a ketyl radical intermediate followed by direct elimination of the C3'-hydroxyl group rather than that of a gem-diol intermediate generated via 1,2-migration of the C3'-hydroxyl group to C4'. The stereochemistry of hydrogen atom incorporation after radical-mediated dehydration was also established.


Assuntos
Aminoglicosídeos/química , Enzimas/química , S-Adenosilmetionina/química , Catálise , Água/química
18.
Nat Chem Biol ; 16(7): 810, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32488179

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Org Lett ; 22(7): 2806-2810, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32212712

RESUMO

The stereoselective synthesis of fimsbactin A, a siderophore of the human pathogen Acinetobacter baumannii, was established. Based on this synthetic route, various fimsbactin stereoisomeric analogues were generated and tested for their iron delivery activity for A. baumannii. This investigation revealed that the fimsbactin uptake machinery in this bacterium was indeed highly stereoselective in substrate recognition.


Assuntos
Acinetobacter baumannii/química , Estrutura Molecular , Estereoisomerismo
20.
Bioorg Med Chem Lett ; 30(4): 126882, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31889666

RESUMO

Development of highly effective, safe, and fast-acting anti-depressants is urgently required for the treatment of major depressive disorder. It has been suggested that targeting 5-HT2A and 5-HT2C in addition to inhibition of serotonin reuptake may be beneficial in generating anti-depressant agents with better pharmacology and less adverse effects. We have developed phthalazinone-based compounds that potently bind to 5-HT2A, 5-HT2C, and the serotonin transporter. The representative compounds 11j and 11l displayed strong binding affinities against these targets, and showed favorable toxicity profiles as determined by hERG binding and CYP inhibition assays. Furthermore, these compounds presented promising anti-depressant effects comparable to fluoxetine and also synergistic effects with fluoxetine in forced swimming test, which implicates these compounds can be developed to help the treatment of major depressive disorder.


Assuntos
Antidepressivos/química , Azóis/química , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2C de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Desenho de Fármacos , Fluoxetina/química , Fluoxetina/farmacologia , Humanos , Concentração Inibidora 50 , Camundongos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA