Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049379

RESUMO

In this study, we developed two novel conjugated polymers that can easily be doped with F4TCNQ organic dopants using a sequential doping method and then studied their organic thermoelectric (OTE) properties. In particular, to promote the intermolecular ordering of OTE polymers in the presence of the F4TCNQ dopant, alkylthiazole-based conjugated building blocks with highly planar backbone structures were synthesized and copolymerized. All polymers showed strong molecular ordering and edge-on orientation in the film state, even in the presence of the F4TCNQ organic dopant. Thus, the sequential doping process barely changed the molecular ordering of the polymer films while making efficient molecular doping. In addition, the doping efficiency was improved in the more π-extended polymer backbones with thienothiophene units due to the emptier space in the polymer lamellar structure to locate ionized F4TCNQ. Moreover, the study of organic thin-film transistors (OTFTs) revealed that higher hole mobility in OTFTs was the key to increasing the electrical conductivity of OTE devices fabricated using the sequential doping method.

2.
Neural Netw ; 159: 125-136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565690

RESUMO

Artificial neural networks (ANNs) have been widely adopted as general computational tools both in computer science as well as many other engineering fields. Stochastic gradient descent (SGD) and adaptive methods such as Adam are popular as robust optimization algorithms used to train the ANNs. However, the effectiveness of these algorithms is limited because they calculate a search direction based on a first-order gradient. Although higher-order gradient methods such as Newton's method have been proposed, they require the Hessian matrix to be semi-definite, and its inversion incurs a high computational cost. Therefore, in this paper, we propose a variable three-term conjugate gradient (VTTCG) method that approximates the Hessian matrix to enhance search direction and uses a variable step size to achieve improved convergence stability. To evaluate the performance of the VTTCG method, we train different ANNs on benchmark image classification and generation datasets. We also conduct a similar experiment in which a grasp generation and selection convolutional neural network (GGS-CNN) is trained to perform intelligent robotic grasping. After considering a simulated environment, we also test the GGS-CNN with a physical grasping robot. The experimental results show that the performance of the VTTCG method is superior to that of four conventional methods, including SGD, Adam, AMSGrad, and AdaBelief.


Assuntos
Redes Neurais de Computação , Robótica , Algoritmos , Benchmarking
3.
ACS Appl Mater Interfaces ; 14(40): 45333-45341, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173933

RESUMO

Silicon monoxide (SiO)-based materials have gained much attention as high-capacity lithium storage materials based on their high capacity and stable capacity retention. However, low initial Coulombic efficiency associated with the irreversible electrochemical reaction of the amorphous SiO2 phase in SiO inhibits the wide usage of SiO-based anode materials for lithium-ion batteries. Magnesiation of SiO is one of the most promising solutions to improve the initial efficiency of SiO-based anode materials. Herein, we demonstrate that endothermic dehydrogenation-driven magnesiation of SiO employing MgH2 enhanced the initial Coulombic efficiency of 89.5% with much improved long-term cycle performance over 300 cycles compared to the homologue prepared by magnesiation of SiO with Mg and pristine SiO. High-resolution transmission electron microscopy with thermogravimetry-differential scanning calorimetry revealed that the endothermic dehydrogenation of MgH2 suppressed the sudden temperature rise during magnesiation of SiO, thereby inhibiting the coarsening of the active Si phase in the resulting Si/Mg2SiO4 nanocomposite.

4.
Small ; 18(27): e2202209, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35686333

RESUMO

Silicon monoxide (SiO)-based materials have great potential as high-capacity anode materials for lithium-ion batteries. However, they suffer from a low initial coulombic efficiency (ICE) and poor cycle stability, which prevent their successful implementation into commercial lithium-ion batteries. Despite considerable efforts in recent decades, their low ICE and poor cycle stability cannot be resolved at the same time. Here, it is demonstrated that the topological optimization of the prelithiated SiO materials is highly effective in improving both ICE and capacity retention. Laser-assisted atom probe tomography combined with thermogravimetry and differential scanning calorimetry reveals that two exothermic reactions related to microstructural evolution are key in optimizing the domain size of the Si active phase and Li2 SiO3 buffer phase, and their topological arrangements in prelithiated SiO materials. The optimized prelithiated SiO, heat-treated at 650 °C, shows higher capacity retention of 73.4% and lower thickness changes of 68% after 300 cycles than those treated at other temperatures, with high ICE of ≈90% and reversible capacity of 1164 mAh g-1 . Such excellent electrochemical properties of the prelithiated SiO electrode originate from its optimized topological arrangement of active Si phase and Li2 SiO3 inactive buffer phase.

5.
Biology (Basel) ; 11(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35205121

RESUMO

Reactive oxygen species (ROS) generated by neutrophils provide a frontline defence against invading pathogens. We investigated the supportive effect of tonsil-derived mesenchymal stem cells (TMSCs) on ROS generation from neutrophils using promyelocytic HL-60 cells. Methods: Differentiated HL-60 (dHL-60) cells were cocultured with TMSCs isolated from 25 independent donors, and ROS generation in dHL-60 cells was measured using luminescence. RNA sequencing and real-time PCR were performed to identify the candidate genes of TMSCs involved in augmenting the oxidative burst of dHL-60 cells. Transcriptome analysis of TMSCs derived from 25 independent donors revealed high levels of procollagen C-endopeptidase enhancer 2 (PCOLCE2) in TMSCs, which were highly effective in potentiating ROS generation in dHL-60 cells. In addition, PCOLCE2 knockdown in TMSCs abrogated TMSC-induced enhancement of ROS production in dHL-60 cells, indicating that TMSCs increased the oxidative burst in dHL-60 cells via PCOLCE2. Furthermore, the direct addition of recombinant PCOLCE2 protein increased ROS production in dHL-60 cells. These results suggest that PCOLCE2 secreted by TMSCs may be used as a therapeutic candidate to enhance host defences by increasing neutrophil oxidative bursts. PCOLCE2 levels in TMSCs could be used as a marker to select TMSCs exhibiting high efficacy for enhancing neutrophil oxidative bursts.

6.
ACS Appl Mater Interfaces ; 13(30): 35759-35766, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34289303

RESUMO

Huge volume changes of silicon particles upon alloying and dealloying reactions with lithium are a major reason for the poor cycle performance of silicon-based anodes for lithium-ion batteries. To suppress dimensional changes of silicon is a key strategy in attempts to improve the electrochemical performance of silicon-based anodes. Here, we demonstrate that a conductive agent can be exploited to offset the mechanical strain imposed on silicon electrodes caused by volume expansion of silicon associated with lithiation. Hollow graphene particles as a conductive agent inhibit volume expansion by absorbing the swelling of silicon upon lithiation through flattening the free voids surrounded by the graphene shell. As a result, silicon electrodes with hollow graphene showed a height expansion of 20.4% after full lithiation with a capacity retention of 69% after 200 cycles, while the silicon electrode with conventional carbon black showed an expansion of 76.8% under the same conditions with a capacity retention of 38%. Some of the deflated hollow graphene returns to its initial shape on delithiation due to the mechanical flexibility of the graphene shell layer. Such a robust microstructure of a silicon electrode incorporating hollow graphene that serves as both an expansion inhibitor and a conductive agent greatly improves capacity retention compared with silicon electrodes with the conventionally used carbon black.

7.
Small ; 17(9): e1902144, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31441193

RESUMO

Sodium secondary batteries have gained much attention as alternative power sources to replace lithium secondary batteries. However, some technical issues must be solved to ensure their success. Here, a highly safe and cost-effective Na-based dual-ion battery system employing self-formulated CuCl cathode material starting from a mixture of Cu and NaCl in conjunction with a nonflammable NaAlCl4 ·2SO2 inorganic liquid electrolyte is demonstrated. It is found that CuCl is spontaneously formed by redox coupling of Cu/Cu(I) and SO2 /SO2 - anion radical. In the proposed battery, Na+ and Cl- are employed as energy carriers for the anode and cathode, respectively, and it is further demonstrated that the Na-metal-free battery configuration is possible using a hard carbon anode. Owing to the use of cheap electrode materials and a highly conductive and safe electrolyte, the proposed batteries deserve to be regarded as a promising approach for next-generation Na rechargeable batteries.

8.
Genomics Inform ; 18(3): e33, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33017877

RESUMO

This paper describes a community effort to improve earlier versions of the full-text corpus of Genomics & Informatics by semi-automatically detecting and correcting PDF-to-text conversion errors and optical character recognition errors during the first hackathon of Genomics & Informatics Annotation Hackathon (GIAH) event. Extracting text from multi-column biomedical documents such as Genomics & Informatics is known to be notoriously difficult. The hackathon was piloted as part of a coding competition of the ELTEC College of Engineering at Ewha Womans University in order to enable researchers and students to create or annotate their own versions of the Genomics & Informatics corpus, to gain and create knowledge about corpus linguistics, and simultaneously to acquire tangible and transferable skills. The proposed projects during the hackathon harness an internal database containing different versions of the corpus and annotations.

9.
RSC Adv ; 10(36): 21375-21381, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518725

RESUMO

Silicon oxides are promising alternatives for graphite anodes in lithium-ion batteries. SiO x nanosheets exhibit favorable anodic performances, including outstanding capacity retention and dimensional stability, due to their unique two-dimensional (2D) microstructures, but suffer from low specific capacity and poor initial coulombic efficiency. Here we demonstrate that chemically anchoring of molybdenum dioxide (MoO2) nanoparticles on the surface of 2D-SiO x nanosheets via a Mo-O-Si bond boosts both the reversible capacity and initial coloumbic efficiency without sacrificing the useful properties of 2D-SiO x nanosheets. The enhancements can be attributed to the introduction of a zero-dimensional MoO2 nano-object, which offers abnormal storage sites for lithium. The proposed nano-architecturing shows how we can maximize the advantages of 2D nanomaterials for energy storage applications.

10.
ACS Nano ; 13(8): 9607-9619, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31380622

RESUMO

Silicon-based materials are the most promising candidates to surpass the capacity limitation of conventional graphite anode for lithium ion batteries. Unfortunately, Si-based materials suffer from poor cycling performance and dimensional instability induced by the large volume changes during cycling. To resolve such problems, nanostructured silicon-based materials with delicately controlled microstructure and interfaces have been intensively investigated. Nevertheless, they still face problems related to their high synthetic cost and their limited electrochemical properties and thermal stability. To overcome these drawbacks, we demonstrate the strategic design and synthesis of a gyroid three-dimensional network in a Si@SiOx/C nanoarchitecture (3D-Si@SiOx/C) with synergetic interaction between the computational prediction and the synthetic optimization. This 3D-Si@SiOx/C exhibits not only excellent electrochemical performance due to its structural stability and superior ion/electron transport but also enhanced thermal stability due to the presence of carbon, which was formed by a cost-effective one-pot synthetic route. We believe that our rationally designed 3D-Si@SiOx/C will lead to the development of anode materials for the next-generation lithium ion batteries.

11.
Chem Commun (Camb) ; 55(44): 6313-6316, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31089590

RESUMO

Polymers of intrinsic microporosity (PIM-1) have an appropriate pore size to reduce the solvation number of Li ions in electrolytes. This unique pore structure of PIM-1 as a solid interphase can suppress transport of solvent and consequently unwanted chemical reactions at the interface of anodes, thereby extending the cycle life of Li metal anodes.

12.
ACS Appl Mater Interfaces ; 11(9): 9054-9061, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735029

RESUMO

Herein, we have identified that lithium ions in an SO2-based inorganic electrolyte reversibly intercalate and deintercalate into/out of graphite electrode using ex situ X-ray diffraction and various electrochemical methods. X-ray photoelectron spectroscopy shows that the solid electrolyte interphase on the graphite electrode is mainly composed of inorganic compounds, such as LiCl and lithium sulfur-oxy compounds. Graphite electrode in SO2-based inorganic electrolyte has stable capacity retention up to 100 cycles and outstanding rate capability performance. This can be attributed to low interfacial impedance and high ionic conductivity of SO2-based inorganic electrolyte, which are superior to those of conventional organic electrolytes. Considering the remarkable rate capability and intrinsically nonflammable properties of the electrolyte, use of graphite and an SO2 electrolyte will likely facilitate the development of advanced lithium-ion batteries.

13.
Chempluschem ; 84(10): 1544-1553, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31943931

RESUMO

Mesoporous lithium metal phosphates are an important class of materials for the development of lithium ion batteries. However, there is a limited success in producing mesoporous lithium metal phosphates in the literature. Here, a lyotropic liquid crystalline (LLC) templating method was employed to synthesize the first examples of LiMPO4 (LMP) of Mn(II), Co(II), and Ni(II). A homogeneous aqueous solution of lithium and transition metal nitrate salts, phosphoric acid (PA), and surfactant (P123) can be spin coated or drop-cast coated over glass slides to form the LLC mesophases which can be calcined into mesoporous amorphous LMPs (MA-LMPs). The metal salts of Mn(II), Co(II) and Ni(II) produce MA-LMPs that crystallize into olivine structures by heat treatment of the LLC mesophase. The Fe(II) compound undergoes air oxidation. Therefore, both Fe(II) and Fe(III) precursors produce a crystalline Li3 Fe2 (PO4 )3 phase at over 400 °C. The MA-LMPs show no reactivity towards lithium, however the crystalline iron compound exhibits electrochemical reactivity with lithium and a good electrochemical energy storage ability using a lithium-ion battery test.

14.
ACS Appl Mater Interfaces ; 10(40): 34699-34705, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30222302

RESUMO

Dendritic growth of a Li metal anode during cycling is one of major issues to be addressed for practical application of Li metal rechargeable batteries. Herein, we demonstrate that surface modification of Li metal with a Na-containing SO2 electrolyte can be an effective way to prevent dendritic Li growth during cell operation. The surface-modified Li metal anode exhibited no dendritic deposits even under a high areal capacity (5 mA h cm-2) and a high current density (3 mA cm-2), whereas the unmodified anode showed typical filamentary Li deposition. The surface-modified Li metal anode also demonstrated significantly enhanced electrochemical performance, which could be attributed to the newly formed Na-containing inorganic surface layer that exhibits uniform and dense properties. Consequently, surface modification with a Na-containing SO2 inorganic electrolyte is suggested as one of the most effective ways to realize a highly stable Li metal anode with dendrite-free Li deposition for Li metal-based rechargeable batteries.

15.
Nanotechnology ; 29(45): 455702, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30136647

RESUMO

Employing proper flame retardant materials is one of the most important fire safety guidelines when constructing buildings. Most flame retardants, however, contain halogen atoms that might become harmful gases to human body during combustion. We designed and fabricated an environmentally friendly flame retardant material with a superior performance for thermal insulation. Nanocrystalline cellulose (NCC) was prepared using acid hydrolysis method, and its surface was chemically modified through silylation treatment. Various characteristics of the flame retardant material, such as morphology, chemical structure, thermal stability, and thermal conductivity were investigated. When a mass ratio of NCC to methyltrimethoxysilane was 1:5, the limiting oxygen index of the silylated NCC increased to 34% and a char yield of 80% was obtained. The silylation led to enhancement in the thermal stability of NCC and generation of the char residue. Chemical structure of the residual materials after combustion was investigated by using Fourier transform infrared spectroscopy and x-ray differential photo spectroscopy.

16.
ChemistryOpen ; 7(8): 599-603, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30094126

RESUMO

Herein, we report a novel method for the formation of hollow Prussian blue analogue (CoFe-PBA) nanocubes, using spherical silica particles as sacrificial templates. In the first step, silica cores are coated by a CoFe-PBA shell and then removed by etching with hydrofluoric acid (HF). The cubic shape of CoFe-PBA is well-retained even after the removal of the silica cores, resulting in the formation of hollow CoFe-PBA cubes. The specific capacity of the hollow CoFe-PBA nanocubes electrodes is about two times higher than that of solid CoFe-PBA nanocubes as storage materials for sodium ions. Such an improvement in the electrochemical properties can be attributed to their hollow internal nanostructure. The hollow architecture can offer a larger interfacial area between the electrolyte and the electrode, leading to an improvement in the electrochemical activity. This strategy can be applied to develop PBAs with hollow interiors for a wide range of applications.

17.
ACS Appl Mater Interfaces ; 10(35): 29992-29999, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30088911

RESUMO

It is widely accepted that solid electrolyte interphase (SEI) layer of carbonaceous material is formed by irreversible decomposition reaction of an electrolyte, and acts as a passivation layer to prevent further decomposition of the electrolyte, ensuring reliable operation of a Li-ion battery. On the other hand, recent studies have reported that some transition metal oxide anode materials undergo reversible decomposition of an organic electrolyte during cycling, which is completely different from carbonaceous anode materials. In this work, we revisit the electrochemical reaction of an electrolyte that produces SEI layer on the surface of carbonaceous anode materials using soft X-ray absorption spectroscopy. We discover that the reversible formation and decomposition of SEI layer are also able to occur on the carbonaceous materials in both Li- and Na-ion battery systems. These new findings on the unexpected behavior of SEI in the carbonaceous anode materials revealed by soft X-ray absorption spectroscopy would be highly helpful in more comprehensive understanding of the interfacial chemistry of carbonaceous anode materials in Li- and Na-ion batteries.

18.
Sci Rep ; 8(1): 6904, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720693

RESUMO

Silicon (Si) based materials are highly desirable to replace currently used graphite anode for lithium ion batteries. Nevertheless, its usage is still a big challenge due to poor battery performance and scale-up issue. In addition, two-dimensional (2D) architectures, which remain unresolved so far, would give them more interesting and unexpected properties. Herein, we report a facile, cost-effective, and scalable approach to synthesize Si nanocrystals embedded 2D SiO x nanofoils for next-generation lithium ion batteries through a solution-evaporation-induced interfacial sol-gel reaction of hydrogen silsesquioxane (HSiO1.5, HSQ). The unique nature of the thus-prepared centimeter scale 2D nanofoil with a large surface area enables ultrafast Li+ insertion and extraction, with a reversible capacity of more than 650 mAh g-1, even at a high current density of 50 C (50 A g-1). Moreover, the 2D nanostructured Si/SiO x nanofoils show excellent cycling performance up to 200 cycles and maintain their initial dimensional stability. This superior performance stems from the peculiar nanoarchitecture of 2D Si/SiO x nanofoils, which provides short diffusion paths for lithium ions and abundant free space to effectively accommodate the huge volume changes of Si during cycling.

19.
ACS Appl Mater Interfaces ; 10(18): 15624-15633, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29676903

RESUMO

Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO x nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO x helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiO x nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiO x layer and between the separator and the Si/SiO x layer improved electrical contact and reduced irreversible pulverization of the Si/SiO x significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.

20.
Small ; 14(43): e1702985, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29280277

RESUMO

Nanostructured materials make a considerable impact on the performance of lithium-storage characteristics in terms of the energy density, power density, and cycle life. Direct experimental observation, by a comparison of controlled nanostructural uniformity of electrode materials, reveals that the lithium-storage behaviors of mesoporous MoO2 and CuO electrodes are linearly correlated with their nanostructural uniformity. Reversible capacities of mesoporous MoO2 and CuO electrodes with well-developed nanostructures (1569 mA h g-1 for MoO2 and 1029 mA h g-1 for CuO) exceed their theoretical capacity based on the conversion reaction (838 mA h g-1 for MoO2 and 674 mA h g-1 for CuO). Given that exact understanding of the origin of the additional capacity is essential in maximizing the energy density of electrode material, this work may help to gain some insights into the development of high energy-density lithium-storage materials for next-generation lithium rechargeable batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...