Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(45): 31346-31352, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37901270

RESUMO

Oxime esters are useful scaffolds in many organic chemistry transformations. Herein, a novel visible-light-mediated three-component reaction for synthesis of oxime esters is reported. Aldehydes, aniline, and N-hydroxyphthalimide (NHPI) esters were used as substrates in this three-component reaction, and eosin Y was used as a crucial photocatalyst for the reaction. Wide ranges of aldehydes and NHPI esters were well tolerated in this reaction method, generating various oxime esters with high efficiency under mild reaction conditions. This visible-light-mediated methodology will be a promising approach to synthesize useful oxime esters in a single step.

2.
Org Biomol Chem ; 21(42): 8494-8499, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861427

RESUMO

A facile one-pot transformation of benzyl esters into esters, amides, and anhydrides is described. α,α-Dichlorodiphenylmethane and FeCl3 were employed as the chlorinating agent and catalyst respectively to convert benzyl esters into acid chloride intermediates, which directly reacted with alcohols, amines, and carboxylic acids. Various esters, amides, and anhydrides were readily obtained with high yields under mild conditions. This method is promising for the practical synthesis of esters, amides, and anhydrides from benzyl esters.

3.
Eur J Med Chem ; 261: 115779, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37776574

RESUMO

A series of 36 pyrazol-4-yl pyridine derivatives (8a-i, 9a-i, 10a-i, and 11a-i) was designed, synthesized, and evaluated for its antiproliferative activity over NCI-60 cancer cell line panel and inhibitory effect against JNK isoforms (JNK1, JNK2, and JNK3). All the synthesized compounds were tested against the NCI-60 cancer cell line panel. Compounds 11b, 11c, 11g, and 11i were selected to determine their GI50s and exerted a superior potency over the reference standard SP600125 against the tested cell lines. 11c showed a GI50 of 1.28 µM against K562 leukemic cells. Vero cells were used to assess 11c cytotoxicity compared to the tested cancer cells. The target compounds were tested against hJNK isoforms in which compound 11e exhibited the highest potency against JNK isoforms with IC50 values of 1.81, 12.7, and 10.5 nM against JNK1, JNK2, and JNK3, respectively. Kinase profiling of 11e showed higher JNK selectivity in 50 kinase panels. Compounds 11c and 11e showed cell population arrest at the G2/M phase, induced early apoptosis, and slightly inhibited beclin-1 production at higher concentrations in K562 leukemia cells relative to SP600125. NanoBRET assay of 11e showed intracellular JNK1 inhibition with an IC50 of 2.81 µM. Also, it inhibited CYP2D6 and 3A4 with different extent and its hERG activity showed little cardiac toxicity with an IC50 of 4.82 µM. hJNK3 was used as a template to generate the hJNK1 crystal structure to explore the binding mode of 11e (PDB ID: 8ENJ) with a resolution of 2.8 °A and showed a typical type I kinase inhibition against hJNK1. Binding energy scores showed that selectivity of 11e towards JNK1 could be attributed to additional hydrophobic interactions relative to JNK3.


Assuntos
Azóis , Proteínas Quinases JNK Ativadas por Mitógeno , Animais , Chlorocebus aethiops , Células Vero , Azóis/farmacologia , Isoformas de Proteínas , Piridinas/farmacologia , Proliferação de Células
4.
J Org Chem ; 88(18): 13291-13302, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641453

RESUMO

A practical one-pot synthesis of esters and amides from tert-butyl esters via acid chloride was developed. Reactions of tert-butyl esters with α,α-dichlorodiphenylmethane as the chlorinating agent and SnCl2 as catalyst-generated acid chloride intermediates in situ were subsequently used in reactions with a variety of alcohols and amines to afford the corresponding esters and amides in high yields under mild reaction conditions. This catalytic synthetic procedure offers an effective strategy for the facile esterification and amidation of tert-butyl esters.

5.
Pharmaceutics ; 15(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37514026

RESUMO

Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.

6.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445730

RESUMO

Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.


Assuntos
Nitroimidazóis , Humanos , Compostos Radiofarmacêuticos/farmacocinética , Radioisótopos de Gálio/farmacocinética , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Hipóxia/diagnóstico por imagem
7.
RSC Adv ; 13(21): 14412-14434, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180001

RESUMO

Sulfur dioxide-containing compounds such as sulfonyl fluorides, sulfonyl esters, and sulfonyl amides are important structural frameworks in many natural products, pharmaceuticals, and organic compounds. Thus, synthesis of these molecules is a very valuable research topic in organic chemistry. Various synthetic methods to introduce SO2 groups into the structure of organic compounds have been developed for the synthesis of biologically and pharmaceutically useful compounds. Recently, visible-light-driven reactions were carried out to create SO2-X (X = F, O, N) bonds, and their effective synthetic approaches were demonstrated. In this review, we summarized recent advances in visible-light-mediated synthetic strategies for generation of SO2-X (X = F, O, N) bonds for various synthetic applications along with proposed reaction mechanisms.

8.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985708

RESUMO

A heterocycle is an important structural scaffold of many organic compounds found in pharmaceuticals, materials, agrochemicals, and biological processes. Azacycles are one of the most common motifs of a heterocycle and have a variety of applications, including in pharmaceuticals. Therefore, azacycles have received significant attention from scientists and a variety of methods of synthesizing azacycles have been developed because their efficient synthesis plays a vital role in the production of many useful compounds. In this review, we summarize recent approaches to preparing azacycles via different methods as well as describe plausible reaction mechanisms.

9.
RSC Adv ; 12(47): 30304-30309, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337952

RESUMO

Azo compounds are useful molecules with a wide range of applications in organic chemistry. Here, a novel visible-light-driven oxidative dehydrogenation of alkyl 2-phenylhydrazinecarboxylates is used for the synthesis of azo compounds. This synthetic method was conducted under an aerobic environment with mild reaction conditions. Sodium anthraquinone sulfonate (SAQS) was employed as the crucial organic photocatalyst in a visible-light-driven reaction to generate various azo compounds in high yields. In addition, aerobic transformation of hydrazobenzenes to azobenzenes using visible light was successfully carried out under SAQS-mediated reaction conditions. This procedure is a practical and promising synthetic approach to produce useful azo compounds.

10.
Pharmaceutics ; 14(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432736

RESUMO

Translocator protein 18 kDa (TSPO) is a transmembrane protein in the mitochondrial membrane, which has been identified as a peripheral benzodiazepine receptor. TSPO is generally present at high concentrations in steroid-producing cells and plays an important role in steroid synthesis, apoptosis, and cell proliferation. In the central nervous system, TSPO expression is relatively modest under normal physiological circumstances. However, some pathological disorders can lead to changes in TSPO expression. Overexpression of TSPO is associated with several diseases, such as neurodegenerative diseases, neuroinflammation, brain injury, and cancers. TSPO has therefore become an effective biomarker of related diseases. Positron emission tomography (PET), a non-invasive molecular imaging technique used for the clinical diagnosis of numerous diseases, can detect diseases related to TSPO expression. Several radiolabeled TSPO ligands have been developed for PET. In this review, we describe recent advances in the development of TSPO ligands, and 18F-radiolabeled TSPO in particular, as PET tracers. This review covers pharmacokinetic studies, preclinical and clinical trials of 18F-labeled TSPO PET ligands, and the synthesis of TSPO ligands.

11.
RSC Adv ; 12(27): 17499-17504, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765441

RESUMO

Sulfonic ester is a chemical structure common to many organic molecules, including biologically active compounds. Herein, a visible-light-induced synthetic method to prepare aryl sulfonic ester from arylazo sulfones was developed. In the present study, a one-pot reaction was carried out using arylazo sulfones, DABSO (DABCO·(SO2)2), and alcohols in the presence of CuI as a coupling catalyst and HCl as an additive to yield sulfonic esters via multicomponent reaction. This synthetic method afforded a wide range of sulfonic esters with high yields under mild conditions.

12.
Org Biomol Chem ; 20(14): 2881-2888, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35318478

RESUMO

A novel efficient transformation reaction of dicarboxylic acids into N-aryl-substituted azacycles is described. In this synthetic procedure, both catalytic SnCl2 and phenylsilane were used as crucial reagents for reaction of arylamines with dicarboxylic acids to produce the desired azacycles. Using this SnCl2-catalyzed synthetic method, various N-aryl-substituted azacycles were successfully prepared from arylamines with dicarboxylic acids in high yield. This practical synthetic method using catalytic SnCl2 can provide a useful approach for preparation of the desired azacycle products from many available dicarboxylic acid starting materials.


Assuntos
Ácidos Dicarboxílicos , Estanho , Aminas , Catálise
13.
Eur J Pharm Sci ; 171: 106115, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995782

RESUMO

In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Piridinas/farmacologia , Relação Estrutura-Atividade
14.
Molecules ; 26(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34885962

RESUMO

Halide moieties are essential structures of compounds in organic chemistry due to their popularity and wide applications in many fields such as natural compounds, agrochemicals, and pharmaceuticals. Thus, many methods have been developed to introduce halides into various organic molecules. Recently, visible-light-driven reactions have emerged as useful methods of organic synthesis. Particularly, halogenation strategies using visible light have significantly improved the reaction efficiency and reduced toxicity, as well as promoted reactions under mild conditions. In this review, we have summarized recent studies in visible-light-mediated halogenation (chlorination, bromination, and iodination) with photocatalysts.

15.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770896

RESUMO

A series of thirteen triarylpyrazole analogs were investigated as inhibitors of lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 macrophages. The target compounds 1a-m have first been assessed for cytotoxicity against RAW 264.7 macrophages to determine their non-cytotoxic concentration(s) for anti-inflammatory testing to make sure that the inhibition of PGE2 and NO production would not be caused by cytotoxicity. It was found that compounds 1f and 1m were the most potent PGE2 inhibitors with IC50 values of 7.1 and 1.1 µM, respectively. In addition, these compounds also showed inhibitory effects of 11.6% and 37.19% on LPS-induced NO production, respectively. The western blots analysis of COX-2 and iNOS showed that the PGE2 and NO inhibitory effect of compound 1m are attributed to inhibition of COX-2 and iNOS protein expression through inactivation of p38.


Assuntos
Anti-Inflamatórios/farmacologia , Dinoprostona/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/biossíntese , Pirazóis/farmacologia , Animais , Anti-Inflamatórios/química , Relação Dose-Resposta a Droga , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Estrutura Molecular , Pirazóis/química , Células RAW 264.7 , Relação Estrutura-Atividade
16.
Anticancer Res ; 41(9): 4353-4364, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475055

RESUMO

BACKGROUND/AIM: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anti-tumor agent. However, resistance to TRAIL has been reported in a number of clinical trials. In this study, we investigated the molecular mechanisms by which a novel histone deacetylase (HDAC) inhibitor, CBUD-1001, sensitizes colorectal cancer (CRC) cells to TRAIL-induced apoptosis. MATERIALS AND METHODS: Apoptotic cell death induced by CBUD-1001 and/or TRAIL was assessed on human CRC cells using the MTT assay, FACS analysis and nuclei staining. The involved molecular mechanisms were explored through western blotting analysis. RESULTS: We demonstrated that combined with CBUD-1001, TRAIL significantly enhanced TRAIL-induced apoptosis in CRC cells via mitochondria-mediated pathways. We also found that hyper-acetylation of histone by CBUD-1001 treatment leads to up-regulation of death receptor (DR) 5 in a dose- and time-dependent manner. Furthermore, we identified that enhanced sensitivity to TRAIL by combination with CBUD-1001 depends on the MAPK/CHOP axis, being a key mediator of DR5. CONCLUSION: A novel HDAC inhibitor CBUD-1001 sensitizes TRAIL-induced apoptosis via up-regulation of DR5, and that CBUD-1001 and TRAIL combination treatment offers an effective strategy to overcome TRAIL resistance in CRC cells.


Assuntos
Neoplasias Colorretais/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos
17.
Chem Asian J ; 16(16): 2155-2167, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34189852

RESUMO

Carbon-fluorine bond formations have received a lot of attention because organofluorine compounds are widely used in pharmaceutical, agricultural, and materials science applications. In particular, the incorporation of fluorine-18, which is a commonly used radioisotope for radiopharmaceuticals for positron emission tomography (PET), a molecular imaging tool for the visualization of biochemical events, human metabolism processes, and the measurement and diagnosis of diseases in humans, plays a crucial role in clinical and preclinical studies. Several synthetic methodologies for carbon-fluorine-18 bond formation have been developed. However, conventional fluorination methods have some remaining drawbacks such as the high temperature and basic environment. Photo-induced catalysis is an emerging technique that allow chemists to achieve the synthesis of target molecular architectures under mild conditions. Moreover, several radiofluorination strategies have been developed via photocatalysis. In this review, we focused on describing recent advances in the field of light-mediated radiofluorination.


Assuntos
Radioisótopos de Flúor , Halogenação/efeitos da radiação , Luz , Compostos Radiofarmacêuticos/química , Catálise , Humanos
18.
Bioorg Chem ; 113: 104990, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051414

RESUMO

Hypoxia is one of key characteristics of microenvironments of solid tumors, and evaluation of hypoxia status in solid tumors is important to determine cancer stage and appropriate treatment. In the present study, novel, multivalent, near-infrared (NIR) fluorescent imaging agents were developed to measure tumor hypoxia. These agents were synthesized using an amino acid as a backbone to connect mono-, bis-, or tris-2-nitroimidazole as a hypoxia-sensitive moiety to enhance uptake by the tumor and to attach sulfo-Cyanine 5.5 as an NIR fluorophore to visualize tumor accumulation. Studies of physical characteristics demonstrated that the novel NIR imaging agents showed suitable optical properties for in vitro and in vivo imaging and were stable in serum. In vitro cellular uptake studies in SK-N-BE(2) and SW620 cell lines demonstrated that NIR imaging agents bearing 2-nitroimidazole structures showed significantly higher tumor uptake in hypoxic cells than in normoxic cells. Moreover, in vivo optical imaging studies using SK-N-BE(2) and SW620 xenografted mice demonstrated that novel, multivalent, 2-nitroimadazole NIR imaging agents with two or three 2-nitroimidazole moieties showed higher uptake in tumor than the control agents with only one 2-nitroimidazole. These observations suggest that novel, multivalent, NIR agents could serve as potential optical imaging agents for evaluating tumor hypoxia.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Corantes Fluorescentes/química , Neuroblastoma/diagnóstico por imagem , Nitroimidazóis/química , Imagem Óptica , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Humanos , Raios Infravermelhos , Estrutura Molecular , Nitroimidazóis/síntese química
19.
Cells ; 10(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807835

RESUMO

Scrub typhus is a fatal zoonotic disease caused by Orientia tsutsugamushi. This disease is accompanied by systemic vasculitis, lymphadenopathy, headache, myalgia, and eschar. In recent studies, a novel strain that is resistant to current medical treatment was identified in Thailand. Thus, the development of new specific drugs for scrub typhus is needed. However, the exact molecular mechanism governing the progression of scrub typhus has not been fully elucidated. To understand disease-related genetic factors and mechanisms associated with the progression of scrub typhus, we performed a genome-wide association study (GWAS) in scrub typhus-infected patients and found a scrub typhus-related signaling pathway by molecular interaction search tool (MIST) and PANTHER. We identified eight potent scrub typhus-related single nucleotide polymorphisms (SNPs) located on the PRMT6, PLGLB2, DTWD2, BATF, JDP2, ONECUT1, WDR72, KLK, MAP3K7, and TGFBR2 genes using a GWAS. We also identified 224 genes by analyzing protein-protein interactions among candidate genes of scrub typhus and identified 15 signaling pathways associated with over 10 genes by classifying these genes according to signaling pathways. The signaling pathway with the largest number of associated genes was the gonadotropin-releasing hormone receptor pathway, followed by the TGF-beta signaling pathway and the apoptosis signaling pathway. To the best of our knowledge, this report describes the first GWAS in scrub typhus.


Assuntos
Loci Gênicos/imunologia , Estudo de Associação Genômica Ampla/métodos , Tifo por Ácaros/imunologia , Humanos , Pessoa de Meia-Idade , Transdução de Sinais
20.
Eur J Med Chem ; 215: 113277, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33601311

RESUMO

The synergistic effect of dual inhibition of serine/threonine protein kinases that are involved in the same signalling pathway of the diseases can exert superior biological benefits for treatment of these diseases. In the present work, a new series of (imidazol-5-yl)pyrimidine was designed and synthesized as dual inhibitors of BRAFV600E and p38α kinases which are considered as key regulators in mitogen-activated protein kinase (MAPK) signalling pathway. The target compounds were evaluated for dual kinase inhibitory activity. The tested compounds exhibited nanomolar scale IC50 values against BRAFV600E and low to sub-micromolar IC50 range against p38α. Compound 20h was identified as the most potent dual BRAFV600E/p38α inhibitor with IC50 values of 2.49 and 85 nM, respectively. Further deep investigation revealed that compound 20h possesses inhibitory activity of TNF-α production in lipopolysaccharide-induced RAW 264.7 macrophages with IC50 value of 96.3 nM. Additionally, the target compounds efficiently frustrated the proliferation of LOX-IMVI melanoma cell line. Compound 20h showed a satisfactory antiproliferative activity with IC50 value of 13 µM, while, compound 18f exhibited the highest cytotoxicity potency with IC50 value of 0.9 µM. Compound 18f is 11.11-fold more selective toward LOX-IMVI melanoma cells than IOSE-80PC normal cells. The newly reported compounds represent therapeutically promising candidates for further development of BRAFV600E/p38α inhibitors in an attempt to overcome the acquired resistance of BRAF mutant melanoma.


Assuntos
Imidazóis/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...