Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793559

RESUMO

Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.


Assuntos
Antivirais , Infecções por Coxsackievirus , Modelos Animais de Doenças , Enterovirus Humano B , Miocardite , Animais , Miocardite/tratamento farmacológico , Miocardite/virologia , Camundongos , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/virologia , Humanos , Enterovirus Humano B/efeitos dos fármacos , Células HeLa , Antivirais/farmacologia , Antivirais/uso terapêutico , Masculino , Camundongos Endogâmicos BALB C , Inflamação/tratamento farmacológico , Inflamação/virologia , Replicação Viral/efeitos dos fármacos
2.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730917

RESUMO

Efficient energy use is crucial for achieving carbon neutrality and reduction. As part of these efforts, research is being carried out to apply a phase change material (PCM) to a concrete structure together with an aggregate. In this study, an energy consumption simulation was performed using data from concrete mock-up structures. To perform the simulation, the threshold investigation was performed through the Bayesian approach. Furthermore, the spiking part of the spiking neural network was modularized and integrated into a recurrent neural network (RNN) to find accurate energy consumption. From the training-test results of the trained neural network, it was possible to predict data with an R2 value of 0.95 or higher through data prediction with high accuracy for the RNN. In addition, the spiked parts were obtained; it was found that PCM-containing concrete could consume 32% less energy than normal concrete. This result suggests that the use of PCM can be a key to reducing the energy consumption of concrete structures. Furthermore, the approach of this study is considered to be easily applicable in energy-related institutions and the like for predicting energy consumption during the summer.

3.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366142

RESUMO

Unmanned underwater operations using remotely operated vehicles or unmanned surface vehicles are increasing in recent times, and this guarantees human safety and work efficiency. Optical cameras and multi-beam sonars are generally used as imaging sensors in underwater environments. However, the obtained underwater images are difficult to understand intuitively, owing to noise and distortion. In this study, we developed an optical and sonar image fusion system that integrates the color and distance information from two different images. The enhanced optical and sonar images were fused using calibrated transformation matrices, and the underwater image quality measure (UIQM) and underwater color image quality evaluation (UCIQE) were used as metrics to evaluate the performance of the proposed system. Compared with the original underwater image, image fusion increased the mean UIQM and UCIQE by 94% and 27%, respectively. The contrast-to-noise ratio was increased six times after applying the median filter and gamma correction. The fused image in sonar image coordinates showed qualitatively good spatial agreement and the average IoU was 75% between the optical and sonar pixels in the fused images. The optical-sonar fusion system will help to visualize and understand well underwater situations with color and distance information for unmanned works.


Assuntos
Dispositivos Ópticos , Som , Humanos , Ruído
4.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215848

RESUMO

Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by symptoms such as fever, fatigue, a sore throat, diarrhea, and coughing. Although various new vaccines against COVID-19 have been developed, early diagnostics, isolation, and prevention remain important due to virus mutations resulting in rapid and high disease transmission. Amino acid substitutions in the major diagnostic target antigens of SARS-CoV-2 may lower the sensitivity for the detection of SARS-CoV-2. For this reason, we developed specific monoclonal antibodies that bind to epitope peptides as antigens for the rapid detection of SARS-CoV-2 NP. The binding affinity between antigenic peptides and monoclonal antibodies was investigated, and a sandwich pair for capture and detection was employed to develop a rapid biosensor for SARS-CoV-2 NP. The rapid biosensor, based on a monoclonal antibody pair binding to conserved epitopes of SARS-CoV-2 NP, detected cultured virus samples of SARS-CoV-2 (1.4 × 103 TCID50/reaction) and recombinant NP (1 ng/mL). Laboratory confirmation of the rapid biosensor was performed with clinical specimens (n = 16) from COVID-19 patients and other pathogens. The rapid biosensor consisting of a monoclonal antibody pair (75E12 for capture and the 54G6/54G10 combination for detection) binding to conserved epitopes of SARS-CoV-2 NP could assist in the detection of SARS-CoV-2 NP under the circumstance of spreading SARS-CoV-2 variants.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Técnicas Biossensoriais/métodos , Epitopos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoensaio , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/imunologia
5.
Microorganisms ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35208892

RESUMO

BACKGROUND: Acid Blue 113 (AB113) is a typical azo dye, and the resulting wastewater is toxic and difficult to remove. METHODS: The experimental culture was set up for the biodegradation of the azo dye AB113, and the cell growth and dye decolorization were monitored. Transcriptome sequencing was performed in the presence and absence of AB113 treatment. The key pathways and enzymes involved in AB113 degradation were found through pathway analysis and enrichment software (GO, EggNog and KEGG). RESULTS: S. melonis B-2 achieved more than 80% decolorization within 24 h (50 and 100 mg/L dye). There was a positive relationship between cell growth and the azo dye degradation rate. The expression level of enzymes involved in benzoate and naphthalene degradation pathways (NADH quinone oxidoreductase, N-acetyltransferase and aromatic ring-hydroxylating dioxygenase) increased significantly after the treatment of AB113. CONCLUSIONS: Benzoate and naphthalene degradation pathways were the key pathways for AB113 degradation. NADH quinone oxidoreductase, N-acetyltransferase, aromatic ring-hydroxylating dioxygenase and CYP450 were the key enzymes for AB113 degradation. This study provides evidence for the process of AB113 biodegradation at the molecular and biochemical level that will be useful in monitoring the dye wastewater treatment process at the full-scale treatment.

6.
Materials (Basel) ; 14(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361257

RESUMO

To solve the problem of black ice, many studies are being carried out. The key in recent days is enhancing the thermal conductivity of concrete. In this study, to improve the thermal conductivity, silicon carbide was used to substitute 50% and 100% of the fine aggregate. In addition, steel fiber is not only for enhancing the mechanical properties but could enhance thermal conductive material. Hence, the arched-type steel fiber was used up to a 1% volume fraction in this study. Furthermore, graphite was used for 5% of the volume fraction for enhancing the thermal conductivity. However, thermal damage would occur due to the difference in thermal conductivity between materials. Therefore, the thermal durability must be verified first. The target application of the concrete in this study was its use as road paving material. To evaluate the thermal durability, freeze-thaw and rapid cyclic thermal attacks were performed. The thermal conductivity of the specimens was increased with the increase in thermal conductive materials. Graphite has already been reported to have a negative effect on mechanical properties, and the results showed that this was the case. However, the steel fiber compensated for the negative effect of graphite, and the silicon carbide provided a filler effect. Graphite also had a negative effect on the freeze-thaw and rapid cyclic thermal attack, but the steel fiber compensated for the reduction in thermal durability. The silicon carbide also helped to improve the thermal durability in the same way as steel fiber. Comprehensively, the steel fiber enhanced all of the properties of the tests. Using 100% silicon carbide was considered the acceptable range, but 50% of silicon carbide was the best. Graphite decreased all the properties except for the thermal conductivity. Therefore, the content of graphite or using other conductive materials used should be carefully considered in further studies.

7.
Microorganisms ; 9(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361939

RESUMO

Effects of bioaugmentation of the composite microbial culture CES-1 on a full scale textile dye wastewater treatment process were investigated in terms of water quality, sludge reduction, dynamics of microbial community structures and their functional genes responsible for degradation of azo dye, and other chemicals. The removal efficiencies for Chemical Oxygen Demand (COD), Total Nitrogen (T-N), Total Phosphorus (T-P), Suspended Solids (SS), and color intensity (96.4%, 78.4, 83.1, 84.4, and 92.0, respectively) 300-531 days after the augmentation were generally improved after bioaugmentation. The denitrification linked to T-N removal appeared to contribute to the concomitant COD removal that triggered a reduction of sludge (up to 22%) in the same period of augmentation. Azo dye and aromatic compound degradation and other downstream pathways were highly metabolically interrelated. Augmentation of CES-1 increased microbial diversity in the later stages of augmentation when a strong microbial community selection of Acinetobacterparvus, Acinetobacterjohnsonii, Marinobacter manganoxydans, Verminephrobacter sp., and Arcobacter sp. occurred. Herein, there might be a possibility that the CES-1 augmentation could facilitate the indigenous microbial community successions so that the selected communities made the augmentation successful. The metagenomic analysis turned out to be a reasonable and powerful tool to provide with new insights and useful biomarkers for the complex environmental conditions, such as the full scale dye wastewater treatment system undergoing bioaugmentation.

8.
World J Microbiol Biotechnol ; 35(10): 149, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31549239

RESUMO

The goal of this study was to investigate the relationship between the denitrification process and carbon metabolism in a full-scale tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1. The metagenomic analysis of the microbial community showed that Brachymonas denitrificans, a known denitrifier, was present at a high level in the treatment stages of buffering (B), primary aeration (PA), and sludge digestion (SD). The occurrences of the amino acid-degrading enzymes alpha ketoglutarate dehydrogenase (α-KGDH) and tryptophan synthase were highly correlated with the presence of denitrification genes, such as napA, narG, nosZ and norB. The occurrence of glutamate dehydrogenase (GDH) was also highly paralleled with the occurrence of denitrification genes such as napA, narG, and norZ. The denitrification genes (nosZ, narG, napA, norB and nrfA) and amino acid degradation enzymes (tryptophan synthase, α-KGDH and pyridoxal phosphate dependent enzymes) were observed at high levels in B. This indicates that degradation of amino acids and denitrification of nitrate may potentially occur in B. The high concentrations of the fatty acid degradation enzyme groups (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and ß-ketothiolase) were observed together with the denitrification genes, such as napA, narG and nosZ. Phospholipase/carboxylesterase, enoyl-CoA hydratase/isomerase, acyl-CoA dehydrogenase, phenylacetate degradation enzyme and 3-hydroxyacyl-CoA dehydrogenase 2 were also dominant in B. All these results clearly indicate that the denitrification pathways are potentially linked to the degradation pathways of amino acids and fatty acids whose degradation products go through the TCA cycle, generating the NADH that is used as electron donors for denitrification.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Desnitrificação , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Metagenômica , Consórcios Microbianos , Nitratos/metabolismo , Esgotos/química , Esgotos/microbiologia , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos
9.
Sci Rep ; 9(1): 8512, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186474

RESUMO

Brain-derived neurotrophic factor (BDNF) plays crucial roles in memory impairments including Alzheimer's disease (AD). Previous studies have reported that tetrasialoganglioside GQ1b is involved in long-term potentiation and cognitive functions as well as BDNF expression. However, in vitro and in vivo functions of GQ1b against AD has not investigated yet. Consequently, treatment of oligomeric Aß followed by GQ1b significantly restores Aß1-42-induced cell death through BDNF up-regulation in primary cortical neurons. Bilateral infusion of GQ1b into the hippocampus ameliorates cognitive deficits in the triple-transgenic AD mouse model (3xTg-AD). GQ1b-infused 3xTg-AD mice had substantially increased BDNF levels compared with artificial cerebrospinal fluid (aCSF)-treated 3xTg-AD mice. Interestingly, we also found that GQ1b administration into hippocampus of 3xTg-AD mice reduces Aß plaque deposition and tau phosphorylation, which correlate with APP protein reduction and phospho-GSK3ß level increase, respectively. These findings demonstrate that the tetrasialoganglioside GQ1b may contribute to a potential strategy of AD treatment.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Gangliosídeos/uso terapêutico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Gangliosídeos/administração & dosagem , Gangliosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Regulação para Cima , Proteínas tau/metabolismo
10.
ACS Appl Mater Interfaces ; 11(16): 14882-14891, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30919616

RESUMO

Conventional printing technologies such as inkjet, screen, and gravure printing have been used to fabricate patterns of silver nanowire (AgNW) transparent conducting electrodes (TCEs) for a variety of electronic devices. However, they have critical limitations in achieving micrometer-scale fine line width, uniform thickness, sharp line edge, and pattering of various shapes. Moreover, the optical and electrical properties of printed AgNW patterns do not satisfy the performance required by flexible integrated electronic devices. Here, we report a high-resolution and large-area patterning of highly conductive AgNW TCEs by reverse offset printing and intense pulsed light (IPL) irradiation for flexible integrated electronic devices. A conductive AgNW ink for reverse offset printing is prepared by carefully adjusting the composition of AgNW content, solvents, surface energy modifiers, and organic binders for the first time. High-quality and high-resolution AgNW micropatterns with various shapes and line widths are successfully achieved on a large-area plastic substrate (120 × 100 mm2) by optimizing the process parameters of reverse offset printing. The reverse offset printed AgNW micropatterns exhibit superior fine line widths (up to 6 µm) and excellent pattern quality such as sharp line edge, fine line spacing, effective wire junction connection, and smooth film roughness. They are post-processed with IPL irradiation, thereby realizing excellent optical, electrical, and mechanical properties. Furthermore, flexible OLEDs and heaters based on reverse offset printed AgNW micropatterns are successfully fabricated and characterized, demonstrating the potential use of the reverse offset printing for the conductive AgNW ink.

11.
Nanoscale ; 10(39): 18812-18820, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30277251

RESUMO

An ultra-sensitive and transparent piezoresistive pressure sensor based on a sea-urchin shaped metal nanoparticle (SSNP)-polyurethane (PU) composite with microdome arrays is successfully fabricated for the first time. The piezoresistive pressure sensor with microdome arrays was prepared using a nanoimprinting process based on an intermediate polymer substrate (IPS) replica mold. It showed a superior sensitivity (71.37 kPa-1) and a high optical transmittance (77.7% at 550 nm) due to the effective quantum tunneling effect even at small concentrations of conductive SSNP filler (6 mg mL-1). The high-performance characteristics of the piezoresistive pressure sensor are attributed to the geometric effects of the microdome structure, especially the stress concentration at small contact spots and the deformation of the contact area. The piezoresistive pressure sensor with microdome arrays also exhibited a fast response/relaxation time (30 ms), ultra-low pressure detection (4 Pa), and excellent long-term stability under harsh conditions. In addition, the effectiveness of the piezoresistive pressure sensors in various sensing applications including sensing mapping, human arterial pulse monitoring, and the detection of muscle movement is also successfully demonstrated. It is anticipated that this novel transparent pressure sensor based on a SSNP-PU composite with microdome arrays will be a key component in the development of integrated transparent sensing applications.

12.
Materials (Basel) ; 11(5)2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29758008

RESUMO

Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

13.
Artigo em Inglês | MEDLINE | ID: mdl-27471001

RESUMO

Nitrogen (N) removal in a tannery wastewater treatment plant was significantly enhanced by the bioaugmentation of the novel consortium BM-S-1. In order to identify dominant taxa responsible for N metabolisms in the different stages of the treatment process, Illumina MiSeq Sequencer was used to conduct metagenome sequencing of the microbial communities in the different stages of treatment system, including influent (I), buffering (B), primary aeration (PA), secondary aeration (SA) and sludge digestion (SD). Based on MG-RAST analysis, the dominant phyla were Proteobacteria, Bacteroidetes and Firmicutes in B, PA, SA and SD, whereas Firmicutes was the most dominant in I before augmentation. The augmentation increased the abundance of the denitrification genes found in the genera such as Ralstonia (nirS, norB and nosZ), Pseudomonas (narG, nirS and norB) and Escherichia (narG) in B and PA. In addition, Bacteroides, Geobacter, Porphyromonasand Wolinella carrying nrfA gene encoding dissimilatory nitrate reduction to ammonium were abundantly present in B and PA. This was corroborated with the higher total N removal in these two stages. Thus, metagenomic analysis was able to identify the dominant taxa responsible for dissimilatory N metabolisms in the tannery wastewater treatment system undergoing bioaugmentation. This metagenomic insight into the nitrogen metabolism will contribute to a successful monitoring and operation of the eco-friendly tannery wastewater treatment system.


Assuntos
Genes Bacterianos , Consórcios Microbianos , Nitrogênio/metabolismo , Esgotos/microbiologia , Compostos de Amônio/metabolismo , Bacteroidetes/metabolismo , DNA Bacteriano/isolamento & purificação , Desnitrificação , Firmicutes/metabolismo , Anotação de Sequência Molecular , Nitrogênio/isolamento & purificação , Proteobactérias/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
14.
Plant Foods Hum Nutr ; 71(2): 129-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27184000

RESUMO

The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 µg/g dry weight (DW)). The strongest antioxidant capacity (µM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants.


Assuntos
Antioxidantes/farmacologia , Capsicum/química , Extratos Vegetais/química , Polifenóis/farmacologia , Antioxidantes/análise , Capsicum/efeitos da radiação , Carotenoides/análise , Carotenoides/farmacologia , Proliferação de Células/efeitos dos fármacos , Clorofila/análise , Clorofila/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Frutas/química , Frutas/efeitos da radiação , Luz , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Polifenóis/metabolismo , Espectrometria de Fluorescência , Taninos/análise , Taninos/farmacologia
15.
Materials (Basel) ; 9(8)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28773776

RESUMO

This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

16.
Neurosci Lett ; 595: 63-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25849526

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which plays important roles in learning and memory formation and in protecting neurons from diverse neurotoxic insults, such as amyloid-beta (Aß). Since BDNF expression is decreased in patients with Alzheimer's disease, various strategies have attempted to increase BDNF levels. In a previous study, we screened and identified a novel BDNF-modulating peptide (consisting of methionine-valine-glycine, named Neuropep-1) by a positional scanning-synthetic peptide combinatorial library (PS-SPCL). Neuropep-1 exhibited neuroprotective effects against in vitro and in vivo Alzheimer's disease models. Based on the previous PS-SPCL data, we modified the amino acid sequence of Neuropep-1 in this study to identify a more potent novel BDNF-modulating peptide. By replacing the valine in the second position with aspartic acid, the resulting Neuropep-4 was found to be highly effective in inducing BDNF expression even at concentrations of 1pM in the SH-SY5Y cell line and rat primary cortical neurons. In addition, among the tested peptides, Neuropep-4 provided neurons with the strongest protection against oligomeric and/or fibrillar Aß1-42-induced cell death through BDNF upregulation. These results suggest the potential of Neuropep-4 as a therapeutic candidate for treating neurodegenerative diseases, such as AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Cultura Primária de Células , Ratos Sprague-Dawley
17.
Artigo em Inglês | MEDLINE | ID: mdl-24279627

RESUMO

In order to develop a more effective and eco-friendly treatment technology, a full-scale tannery wastewater treatment plant with a sludge digestion system was augmented with a novel microbial consortium (BM-S-1). The aim of this study was to determine if the BM-S-1 could successfully treat the tannery wastewater in a full-scale treatment system without chemical pretreatment and to investigate effect of the augmentation on sludge production. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), chromium (Cr) and mixed liquor suspended solids (MLSS) were measured to monitor treated water quality and treatment efficiency. Microbial community structures in the treatment were also examined using pyrosequencing analysis of 16S rRNA gene and quantitative PCR (qPCR) of the nitrous oxide reductase gene (nosZ). The removal efficiencies of COD, TN, TP, and Cr were estimated to be 98.3%, 98.6%, 93.6%, and 88.5%, respectively, while the system without a continuous augmentation was broken down. The pyrosequencing analysis showed Brachymonas denitrificans to be the most dominant microbial population in the buffering tank (B; 37.5%). Potential polymeric substance degraders (Clostridia), sulfate reducers (Desulfuromonas palmitatis), and sulfur oxidizers (uncultured Thiobacillus) were dominant in the sludge digestion (SD) tank. The denitrifiers assayed by nosZ qPCR were dominant in B and SD. These microbial communities appeared to play important roles in removing nutrients and odor, and reducing sludge in the wastewater treatment plant without chemical pretreatment.


Assuntos
Consórcios Microbianos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Cromo/metabolismo , Clostridium/metabolismo , Desulfuromonas , Resíduos Industriais , Consórcios Microbianos/genética , Nitrogênio/metabolismo , Fósforo/metabolismo , Esgotos , Qualidade da Água
18.
Neurobiol Aging ; 35(5): 990-1001, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24268884

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid beta (Aß) deposits, hyperphosphorylated tau deposition, and cognitive dysfunction. Abnormalities in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in learning and memory formation, have been reported in the brains of AD patients. A BDNF modulating peptide (Neuropep-1) was previously identified by positional-scanning synthetic peptide combinatorial library. Here we examine the neuroprotective effects of Neuropep-1 on several in vitro neurotoxic insults, and triple-transgenic AD mouse model (3xTg-AD). Neuropep-1 protects cultured neurons against oligomeric Aß1-42, 1-methyl-4-phenylpyridinium, and glutamate-induced neuronal cell death. Neuropep-1 injection also significantly rescues the spatial learning and memory deficits of 3xTg-AD mice compared with vehicle-treated control group. Neuropep-1 treatment markedly increases hippocampal and cortical BDNF levels. Furthermore, we found that Neuropep-1-injected 3xTg-AD mice exhibit dramatically reduced Aß plaque deposition and Aß levels without affecting tau pathology. Neuropep-1 treatment does not alter the expression or activity of full-length amyloid precursor protein, α-, ß-, or γ-secretase, but levels of insulin degrading enzyme, an Aß degrading enzyme, were increased. These findings suggest Neuropep-1 may be a therapeutic candidate for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Encéfalo/metabolismo , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Placa Amiloide/metabolismo , 1-Metil-4-fenilpiridínio/efeitos adversos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos adversos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Ácido Glutâmico/efeitos adversos , Humanos , Camundongos , Terapia de Alvo Molecular , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos adversos
19.
Artigo em Inglês | MEDLINE | ID: mdl-23947713

RESUMO

A novel microbial consortium (BM-S-1) enriched from natural soils was successfully used to treat tannery wastewater from leather manufacturing industries in Korea on a pilot scale. The objective of this study was to determine whether augmentation with a novel microbial consortium BM-S-1could successfully treat the recalcitrant wastewater without chemical pre-treatment in a tannery wastewater treatment system. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were monitored for water quality. The microbial population dynamics were analyzed using pyrosequencing, and denitrifying bacteria were quantified using real-time PCR (RT-PCR). The removal efficiencies for COD, TN and TP were greater than 91%, 79%, and 90%, respectively. The dominant phyla in the buffering tank (B), primary aeration (PA), secondary aeration (SA) and sludge digestion tank (SD) were Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes and Deinococcus-Thermus. Cluster analysis based on the UniFrac distance of the species in the different stages showed that the PA is similar to the SA, whereas the B is similar to the SD. qPCR of the nosZ genes showed the highest abundance of denitrifiers in B, which was increased 734-fold compared to the influent (I). It was hypothesized that anaerobic denitrifiers and the diverse microbial community may play important roles in the biological treatment of tannery wastewater. This technology may also contribute to the full-scale treatment of industrial wastewater containing food processing wastewater and marine sediment with high organic content.


Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos/efeitos dos fármacos , Curtume , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Qualidade da Água , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Nitrogênio/metabolismo , Fósforo/metabolismo , Projetos Piloto , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia , Esgotos/microbiologia
20.
J Mol Biol ; 390(3): 339-52, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19467243

RESUMO

Immunoglobulin J chain (IgJ) promoter had previously been dissected in the context of a heterologous enhancer and/or promoter because its strength was weak and its authentic enhancer was not available at that time. Thus, it has been questioned whether the previous dissection of the IgJ promoter might also be relevant in the context of its authentic enhancer. Now that the authentic IgJ enhancer has been identified, redelineation of the IgJ promoter could be performed in the context of this authentic enhancer. In this redelineation, the previously identified MEF2 and PU.1 sites were shown to be critical for communicating with its authentic enhancer and thereby for receiving enhancer activity. In accordance with this finding, a DNA-looping interaction between the IgJ promoter and its enhancer was demonstrated using chromosome conformation capture assays not only in IgJ-expressing S194 plasma cells but also during interleukin-2-induced BCL1 B-cell terminal differentiation. Furthermore, MEF2 was shown to be reciprocally coimmunoprecipitated with E47, which had been identified to bind to the IgJ enhancer, suggesting that the DNA-looping interaction between the IgJ promoter and its enhancer might be mediated by these proteins. However, the previously identified USF and BSAP sites were shown to be not important for IgJ promoter activity in the context of its authentic enhancer. These findings were further supported by in vivo footprinting and/or chromatin immunoprecipitation assays, which showed the binding of MEF2 and PU.1-but not the binding of USF and BSAP-to the IgJ promoter.


Assuntos
Cadeias J de Imunoglobulina/genética , Fatores de Regulação Miogênica/metabolismo , Regiões Promotoras Genéticas , Animais , Linfócitos B/fisiologia , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Camundongos , Dados de Sequência Molecular , Plasmócitos/fisiologia , Ligação Proteica , Fatores de Transcrição TCF/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA