Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Cancer Immunol Immunother ; 73(10): 190, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105882

RESUMO

Transforming growth factor ß (TGFß) is present in blood of patients who do not respond to anti-programmed cell death (ligand) 1 [PD-(L)1] treatment, and through synergy with vascular endothelial growth factor (VEGF), it helps to create an environment that promotes tumor immune evasion and immune tolerance. Therefore, simultaneous inhibition of TGFß/VEGF is more effective than targeting TGFß alone. In this study, the dual inhibitory mechanism of TU2218 was identified through in vitro analysis mimicking the tumor microenvironment, and its antitumor effects were analyzed using mouse syngeneic tumor models. TU2218 directly restored the activity of damaged cytotoxic T lymphocytes (CTLs) and natural killer cells inhibited by TGFß and suppressed the activity and viability of regulatory T cells. The inactivation of endothelial cells induced by VEGF stimulation was completely ameliorated by TU2218, an effect not observed with vactosertib, which inhibits only TGFß signaling. The combination of TU2218 and anti-PD1 therapy had a significantly greater antitumor effect than either drug alone in the poorly immunogenic B16F10 syngeneic tumor model. The mechanism of tumor reduction was confirmed by flow cytometry, which showed upregulated VCAM-1 expression in vascular cells and increased influx of CD8 + CTLs into the tumor. As another strategy, combination of anti-CTLA4 therapy and TU2218 resulted in high complete regression (CR) rates in CT26 and WEHI-164 tumor models. In particular, immunological memory generated by the combination of anti-CTLA4 and TU2218 in the CT26 model prevented the development of tumors after additional tumor cell transplantation, suggesting that the TU2218-based combination has therapeutic potential in immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Feminino , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Imunoterapia/métodos
2.
Sci Rep ; 14(1): 18095, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103443

RESUMO

Free radical is a marker in various inflammatory diseases. The antioxidant effect protects us from this damage, which also plays an essential role in preventing inflammation. Inflammation protects the body from biological stimuli, and pro-inflammatory mediators are negatively affected in the immune system. Inflammation caused by LPS is an endotoxin found in the outer membrane of Gram-negative bacteria, which induces immune cells to produce inflammatory cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase. Based on this, the antioxidant and anti-inflammatory effects of plant extracts were investigated. First, the main phenolic compounds for the five peaks obtained from Stachys affinis extract (SAE) were identified. The antioxidant effect of each phenolic compound was confirmed through HPLC analysis before and after the competitive binding reaction between DPPH and the extract. Afterward, the anti-inflammatory effect of each phenolic compound was confirmed through competitive binding between COX2 and the extract in HPLC analysis. Lastly, the anti-inflammatory effect of SAE was confirmed through in vitro experiments and also confirmed in terms of structural binding through molecular docking. This study confirmed that phenolic compounds in SAE extract have potential antioxidant and anti-inflammatory effects, and may provide information for primary screening of medicinal plants.


Assuntos
Anti-Inflamatórios , Antioxidantes , Simulação de Acoplamento Molecular , Extratos Vegetais , Polifenóis , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis/farmacologia , Polifenóis/química , Ciclo-Oxigenase 2/metabolismo , Cromatografia Líquida de Alta Pressão , Animais
3.
J Agric Food Chem ; 72(29): 16359-16367, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011851

RESUMO

In our screening program for natural products that are effective in controlling plant diseases, we found that the culture filtrate of Paraconiothyrium sporulosum SFC20160907-M11 effectively suppressed the development of tomato late blight disease caused by Phytophthora infestans. Using a bioassay-guided fractionation of antioomycete activity, 12 active compounds (1-12) were obtained from an ethyl acetate extract of the culture filtrate. Chemical structures of five new compounds 1-5 were determined by the extensive analyses of nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), and circular dichroism (CD) data. Interestingly, mycosporulonol (1) and botrallin (8) completely inhibited the growth of P. infestans at concentrations of 8 and 16 µg/mL, respectively. Furthermore, the spray treatment of 1 and 8 (500 µg/mL) successfully protected tomato seedlings against P. infestans with disease control values of 92%. Taken together, these results suggest that the culture filtrates of P. sporulosum SFC20160907-M11 and their bioactive metabolites can be used as new antioomycete agents for Phytophthora late blight control.


Assuntos
Ascomicetos , Fungicidas Industriais , Phytophthora infestans , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/química , Doenças das Plantas/microbiologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Ascomicetos/química , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética
4.
Eur Spine J ; 33(8): 3161-3164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955867

RESUMO

PURPOSE: Spinal tuberculosis, if not promptly treated, can lead to kyphotic deformity, causing persistent neurological abnormalities and discomfort. Spinal cord compression can occur due to ossification of the ligamentum flavum (OLF) at the apex of kyphosis. Traditional surgical interventions, including osteotomy and fixation, pose challenges and risks. We present a case of thoracic myelopathy in a patient with post-tuberculosis kyphosis, successfully treated with biportal endoscopic spinal surgery (BESS). METHOD: A 73-year-old female with a history of untreated kyphosis presented with walking difficulties and lower limb pain. Imaging revealed a kyphotic deformity of 120° and OLF-induced cord compression at T8-9. UBE was performed under spinal anesthesia. Using the BESS technique, OLF was successfully removed with minimal damage to the stabilizing structures. RESULTS: The patient exhibited neurological improvement after surgery, walking on the first day without gait instability. Follow-up at 1 year showed no kyphosis progression or recurrence of symptoms. BESS successfully resolved the cord compression lesion with minimal blood loss and damage. CONCLUSION: In spinal tuberculosis-related OLF, conventional open surgery poses challenges. BESS emerges as an excellent alternative, providing effective decompression with reduced instrumentation needs, minimal blood loss, and preservation of surrounding structures. Careful patient selection and surgical planning are crucial for optimal outcomes in endoscopic procedures.


Assuntos
Descompressão Cirúrgica , Endoscopia , Cifose , Ligamento Amarelo , Ossificação Heterotópica , Tuberculose da Coluna Vertebral , Humanos , Idoso , Feminino , Cifose/cirurgia , Cifose/etiologia , Cifose/diagnóstico por imagem , Ligamento Amarelo/cirurgia , Ligamento Amarelo/diagnóstico por imagem , Descompressão Cirúrgica/métodos , Tuberculose da Coluna Vertebral/cirurgia , Tuberculose da Coluna Vertebral/complicações , Tuberculose da Coluna Vertebral/diagnóstico por imagem , Endoscopia/métodos , Ossificação Heterotópica/cirurgia , Ossificação Heterotópica/complicações , Ossificação Heterotópica/diagnóstico por imagem , Compressão da Medula Espinal/cirurgia , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Vértebras Torácicas/diagnóstico por imagem , Resultado do Tratamento
5.
PLoS One ; 19(7): e0305864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959272

RESUMO

This research aims to establish a practical stress detection framework by integrating physiological indicators and deep learning techniques. Utilizing a virtual reality (VR) interview paradigm mirroring real-world scenarios, our focus is on classifying stress states through accessible single-channel electroencephalogram (EEG) and galvanic skin response (GSR) data. Thirty participants underwent stress-inducing VR interviews, with biosignals recorded for deep learning models. Five convolutional neural network (CNN) architectures and one Vision Transformer model, including a multiple-column structure combining EEG and GSR features, showed heightened predictive capabilities and an enhanced area under the receiver operating characteristic curve (AUROC) in stress prediction compared to single-column models. Our experimental protocol effectively elicited stress responses, observed through fluctuations in stress visual analogue scale (VAS), EEG, and GSR metrics. In the single-column architecture, ResNet-152 excelled with a GSR AUROC of 0.944 (±0.027), while the Vision Transformer performed well in EEG, achieving peak AUROC values of 0.886 (±0.069) respectively. Notably, the multiple-column structure, based on ResNet-50, achieved the highest AUROC value of 0.954 (±0.018) in stress classification. Through VR-based simulated interviews, our study induced social stress responses, leading to significant modifications in GSR and EEG measurements. Deep learning models precisely classified stress levels, with the multiple-column strategy demonstrating superiority. Additionally, discreetly placing single-channel EEG measurements behind the ear enhances the convenience and accuracy of stress detection in everyday situations.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Resposta Galvânica da Pele , Estresse Psicológico , Realidade Virtual , Humanos , Eletroencefalografia/métodos , Feminino , Masculino , Adulto , Estresse Psicológico/fisiopatologia , Estresse Psicológico/diagnóstico , Resposta Galvânica da Pele/fisiologia , Adulto Jovem , Curva ROC , Redes Neurais de Computação
6.
Cancer Res Treat ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38965923

RESUMO

Purpose: Stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) are increasingly used as initial therapies for brain metastases (BM). We aimed to assess the outcomes of SRS/FSRT in patients aged ≥65 years who had 1-10 BM from non-small cell lung cancer (NSCLC). Materials and Methods: We retrospectively reviewed 91 elderly NSCLC patients with 222 BM who were treated with SRS/FSRT at two institutions between 2010 and 2020. The primary endpoint was overall survival (OS) after SRS/FSRT. In addition, in-field local control (IFLC) within the treated field was evaluated. Statistical analysis was performed to identify the prognostic factors affecting OS and IFLC. Results: During a median follow-up of 18 months, the median OS was 32 months. The 1- and 2-year survival rates were 69.8 and 56.1%, respectively. In multivariate analysis, the NSCLC-specific graded prognostic assessment (GPA) score (p=0.007) and administration of systemic therapy (p=0.039) were defined as prognosticators affecting OS. The median IFLC period was 31 months, and the 1- and 2-year IFLC rates were 75.9 and 57.6%, respectively. The total BM volume (p=0.042) significantly affected IFLC. No severe adverse events were reported after SRS/FSRT. Conclusion: SRS/FSRT is an effective upfront treatment option for BM arising from NSCLC in elderly patients, with a good OS without severe side effects. Higher GPA score and active systemic treatment were associated with improved OS, indicating that elderly patients are significant candidates for SRS/FSRT.

7.
Adv Sci (Weinh) ; 11(29): e2400920, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828677

RESUMO

Distant metastasis, the leading cause of cancer death, is efficiently kept in check by immune surveillance. Studies have uncovered peripheral natural killer (NK) cells as key antimetastatic effectors and their dysregulation during metastasis. However, the molecular mechanism governing NK cell dysfunction links to metastasis remains elusive. Herein, MAP4K1 encoding HPK1 is aberrantly overexpressed in dysfunctional NK cells in the periphery and the metastatic site. Conditional HPK1 overexpression in NK cells suffices to exacerbate melanoma lung metastasis but not primary tumor growth. Conversely, MAP4K1-deficient mice are resistant to metastasis and further protected by combined immune-checkpoint inhibitors. Mechanistically, HPK1 restrains NK cell cytotoxicity and expansion via activating receptors. Likewise, HPK1 limits human NK cell activation and associates with melanoma NK cell dysfunction couples to TGF-ß1 and patient response to immune checkpoint therapy. Thus, HPK1 is an intracellular checkpoint controlling NK-target cell responses, which is dysregulated and hijacked by tumors during metastatic progression.


Assuntos
Progressão da Doença , Células Matadoras Naturais , Melanoma , Células Matadoras Naturais/imunologia , Animais , Camundongos , Melanoma/genética , Melanoma/patologia , Melanoma/imunologia , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Modelos Animais de Doenças , Metástase Neoplásica , Linhagem Celular Tumoral
9.
Korean J Intern Med ; 39(4): 650-658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910508

RESUMO

BACKGROUND/AIMS: Statins are common lipid-lowering agents used in dyslipidemia. However, they increase serum creatinine phosphokinase (CPK) levels. Currently, there are no studies on the effect of thyroid-stimulating hormone (TSH) levels on CPK levels after statin administration. Therefore, this study aimed to investigate CPK level alterations after statin administration according to TSH quartiles in participants with euthyroidism. METHODS: This retrospective analysis included 25,047 patients with euthyroidism. CPK levels were measured before and 6 months after statin administration. Normal TSH levels were divided into four quartiles, and the CPK levels and proportions of patients with normal CPK levels after statin administration for each TSH quartile were evaluated. RESULTS: The baseline CPK level was significantly higher in the lowest TSH quartile (Q1) compared to the other quartiles but decreased after statin administration. Thus, the difference between the CPK levels and the other quartile groups was not significant. The proportion of patients with normal CPK levels was also significantly lowest in Q1 before statin administration; however, no significant difference was noted in the ratio among each group after statin administration. These findings were consistent with the findings of the analysis according to statin intensity. CONCLUSION: In patients in the lowest TSH quartile of the normal TSH range, the CPK level decreased, and the proportion of normal CPK levels increased significantly after statin administration. However, similar changes were not observed in other TSH quartiles. Therefore, further studies are required to mechanistically confirm these conclusions.


Assuntos
Biomarcadores , Creatina Quinase , Inibidores de Hidroximetilglutaril-CoA Redutases , Glândula Tireoide , Tireotropina , Humanos , Estudos Retrospectivos , Masculino , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Pessoa de Meia-Idade , Tireotropina/sangue , Idoso , Glândula Tireoide/efeitos dos fármacos , Biomarcadores/sangue , Creatina Quinase/sangue , Fatores de Tempo , Adulto , Dislipidemias/tratamento farmacológico , Dislipidemias/sangue , Dislipidemias/diagnóstico , Resultado do Tratamento
10.
Biomaterials ; 311: 122667, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38878480

RESUMO

Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine interferon (IFN)-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors. In this study, we observed that IFN-γ-treated MSCs upregulated the expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), associated with immune evasion through the inhibition of natural killer (NK) cell cytotoxicity. To co-opt this immunomodulatory function, we generated MSCs overexpressing CEACAM1 and found that CEACAM1-engineered MSCs significantly reduced NK cell activation and cytotoxicity via cell-to-cell interaction, independent of NKG2D ligand regulation. Furthermore, CEACAM1-engineered MSCs effectively inhibited the proliferation and activation of T cells along with the inflammatory responses of monocytes. In a humanized GvHD mouse model, CEACAM1-MSCs, particularly CEACAM1-4S-MSCs, demonstrated therapeutic potential by improving survival and alleviating symptoms. These findings suggest that CEACAM1 expression on MSCs contributes to MSC-mediated regulation of immune responses and that CEACAM1-engineered MSC could have therapeutic potential in conditions involving immune dysregulation.


Assuntos
Antígenos CD , Moléculas de Adesão Celular , Comunicação Celular , Doença Enxerto-Hospedeiro , Células Matadoras Naturais , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Antígenos CD/metabolismo , Humanos , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Moléculas de Adesão Celular/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Imunomodulação , Camundongos , Interferon gama/metabolismo , Transplante de Células-Tronco Mesenquimais , Proliferação de Células/efeitos dos fármacos , Engenharia Celular/métodos
11.
mBio ; 15(7): e0135124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860787

RESUMO

Plant pathogenic fungi cause serious diseases, which result in the loss of crop yields and reduce the quality of crops worldwide. To counteract the escalating risks of chemical fungicides, interest in biological control agents to manage plant diseases has significantly increased. In this study, we comprehensively screened microbial culture filtrates using a yeast screening system to find microbes exhibiting respiratory inhibition activity. Consequently, we found a soil-borne microbe Brevibacillus brevis HK544 strain exhibiting a respiration inhibitory activity and identified edeine B1 (EB1) from the culture filtrate of HK544 as the active compound of the respiration inhibition activity. Furthermore, against a plant pathogenic fungus Fusarium graminearum, our results showed that EB1 has effects on multiple aspects of respiration with the downregulation of most of the mitochondrial-related genes based on transcriptome analysis, differential EB1-sensitivity from targeted mutagenesis, and the synergistic effects of EB1 with electron transport chain complex inhibitors. With the promising plant disease control efficacy of B. brevis HK544 producing EB1, our results suggest that B. brevis HK544 has potential as a biocontrol agent for Fusarium head blight.IMPORTANCEAs a necrotrophic fungus, Fusarium graminearum is a highly destructive pathogen causing severe diseases in cereal crops and mycotoxin contamination in grains. Although chemical control is considered the primary approach to control plant disease caused by F. graminearum, fungicide-resistant strains have been detected in the field after long-term continuous application of fungicides. Moreover, applying chemical fungicides that trigger mycotoxin biosynthesis is a great concern for many researchers. Biocontrol of Fusarium head blight (FHB) by biological control agents (BCAs) represents an alternative approach and could be used as part of the integrated management of FHB and mycotoxin production. The most extensive studies on bacterial BCAs-fungal communications in agroecosystems have focused on antibiosis. Although many BCAs in agricultural ecology have already been used for fungal disease control, the molecular mechanisms of antibiotics produced by BCAs remain to be elucidated. Here, we found a potential BCA (Brevibacillus brevis HK544) with a strong antifungal activity based on the respiration inhibition activity with its active compound edeine B1 (EB1). Furthermore, our results showed that EB1 secreted by HK544 suppresses the expression of the mitochondria-related genes of F. graminearum, subsequently suppressing fungal development and the virulence of F. graminearum. In addition, EB1 exhibited a synergism with complex I inhibitors such as rotenone and fenazaquin. Our work extends our understanding of how B. brevis HK544 exhibits antifungal activity and suggests that the B. brevis HK544 strain could be a valuable source for developing new crop protectants to control F. graminearum.


Assuntos
Brevibacillus , Fusarium , Mitocôndrias , Doenças das Plantas , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Virulência , Agentes de Controle Biológico/farmacologia , Fungicidas Industriais/farmacologia
12.
J Craniofac Surg ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842307

RESUMO

The aim of this study was to conduct an anthropometric analysis of the 5 portraits painted by Botticelli that depict Simonetta Vespucci. Five images in the Simonetta series by Botticelli workshop were measured. The anthropometric measurements of the face included 22 parameters on the lateral view (in 4 portraits; 18 distances and 4 angles) and 17 distances on the frontal view (in one portrait), which were measured using Adobe Photoshop. The absolute distances were calculated relative to the vertical corneal diameter (10.6 mm), which was calculated by multiplying the distance from the pupil's center to the lower margin of the iris. In the lateral faces, the nasofrontal angle (g-n-prn) was 157.6±2.4 degrees, and the nasal tip angle (n-prn-sn) was 99.7±3.4 degrees. The nasolabial angle (prn-sn-ls) was 125.7±4.9 degrees, and the labiomental angle (li-sl-pg) was 131.6±4.4 degrees. The ratio of the upper lip height to the lower lip height (sn-sto/sto-sl) was 85.4±9.0%. The ratio of the upper lip vermillion to the upper lip height (ls-sto/sn-sto) was 27.7±3.9%. The ratio of the lower lip vermillion to the lower lip height (sto-li/sto-sl) was 47.2±6.6%. Comparing the data with 21st-century Italian females, forehead II height (tr-n), physiognomical face height (tr-gn), and morphologic face height (n-gn) of the beauties of the 15th century were significantly greater than those of 21st-century Italian females. However, there were no significant differences in lower face height (sn-gn) and nose height (n-sn). Considering the ongoing cultural relevance of Renaissance art, the esthetic proportions from this study may have reflection to the present day plastic surgery.

13.
Antioxidants (Basel) ; 13(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790646

RESUMO

In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber-DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF's antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD.

14.
Antioxidants (Basel) ; 13(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790680

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 µg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment.

15.
Front Immunol ; 15: 1388018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698855

RESUMO

Natural killer (NK) cells are key effectors in cancer immunosurveillance, eliminating a broad spectrum of cancer cells without major histocompatibility complex (MHC) specificity and graft-versus-host diseases (GvHD) risk. The use of allogeneic NK cell therapies from healthy donors has demonstrated favorable clinical efficacies in treating diverse cancers, particularly hematologic malignancies, but it requires cytokines such as IL-2 to primarily support NK cell persistence and expansion. However, the role of IL-2 in the regulation of activating receptors and the function of NK cells expanded for clinical trials is poorly understood and needs clarification for the full engagement of NK cells in cancer immunotherapy. Here, we demonstrated that IL-2 deprivation significantly impaired the cytotoxicity of primary expanded NK cells by preferentially downregulating NKp30 but not NKp46 despite their common adaptor requirement for expression and function. Using NK92 and IL-2-producing NK92MI cells, we observed that NKp30-mediated cytotoxicity against myeloid leukemia cells such as K562 and THP-1 cells expressing B7-H6, a ligand for NKp30, was severely impaired by IL-2 deprivation. Furthermore, IL-2 deficiency-mediated NK cell dysfunction was overcome by the ectopic overexpression of an immunostimulatory NKp30 isoform such as NKp30a or NKp30b. In particular, NKp30a overexpression in NK92 cells improved the clearance of THP-1 cells in vivo without IL-2 supplementation. Collectively, our results highlight the distinct role of IL-2 in the regulation of NKp30 compared to that of NKp46 and suggest NKp30 upregulation, as shown here by ectopic overexpression, as a viable modality to harness NK cells in cancer immunotherapy, possibly in combination with IL-2 immunocytokines.


Assuntos
Citotoxicidade Imunológica , Interleucina-2 , Células Matadoras Naturais , Receptor 3 Desencadeador da Citotoxicidade Natural , Humanos , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interleucina-2/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Células K562 , Células THP-1 , Antígenos B7/genética , Antígenos B7/metabolismo , Antígenos B7/imunologia
16.
Cell Biosci ; 14(1): 57, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704587

RESUMO

BACKGROUND: Psoriasis is an inflammatory skin disease characterized by the hyperproliferative epidermal keratinocytes and significant immune cells infiltration, leading to cytokines production such as IL-1ß, TNF-α, IL-23, and IL-17. Recent study highlights the critical role of IL-1ß in the induction and activation of pathogenic Th17 and IL-17-producing γδ T cells, contributing to psoriasis. However, the mechanism underlying IL-1ß dysregulation in psoriasis pathogenesis is unclear. Autophagy regulates IL-1ß production and has a pleiotropic effect on inflammatory disorders. Previous studies showed controversial role of autophagy in psoriasis pathogenesis, either pro-inflammatory in autophagy-deficient keratinocyte or anti-inflammatory in pharmacologically autophagy-promoting macrophages. Thus, the direct role of autophagy and its therapeutic potential in psoriasis remains unclear. METHODS: We used myeloid cell-specific autophagy-related gene 7 (Atg7)-deficient mice and determined the effect of autophagy deficiency in myeloid cells on neutrophilia and disease pathogenesis in an imiquimod-induced psoriasis mouse model. We then assessed the pathogenic mechanism focusing on immune cells producing IL-1ß and IL-17 along with gene expression profiles associated with psoriasis in mouse model and public database on patients. Moreover, therapeutic potential of IL-1ß blocking in such context was assessed. RESULTS: We found that autophagy deficiency in myeloid cells exacerbated neutrophilic inflammation and disease pathogenesis in mice with psoriasis. This autophagy-dependent effect was associated with a significant increase in IL-1ß production from myeloid cells, particularly macrophages, Cxcl2 expression, and IL-17 A producing T cells including γδ T cells. Supporting this, treatment with systemic IL-1 receptor blocking antibody or topical saccharin, a disaccharide suppressing pro-IL-1ß expression, led to the alleviation of neutrophilia and psoriatic skin inflammation linked to autophagy deficiency. The pathophysiological relevance of this finding was supported by dysregulation of autophagy-related genes and their correlation with Th17 cytokines in psoriatic skin lesion from patients with psoriasis. CONCLUSIONS: Our results suggest that autophagy dysfunction in myeloid cells, especially macrophages, along with IL-1ß dysregulation has a causal role in neutrophilic inflammation and psoriasis pathogenesis.

17.
mSphere ; 9(5): e0081823, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591889

RESUMO

The mycelium of the plant pathogenic fungus Fusarium graminearum exhibits distinct structures for vegetative growth, asexual sporulation, sexual development, virulence, and chlamydospore formation. These structures are vital for the survival and pathogenicity of the fungus, necessitating precise regulation based on environmental cues. Initially identified in Magnaporthe oryzae, the transcription factor Con7p regulates conidiation and infection-related morphogenesis, but not vegetative growth. We characterized the Con7p ortholog FgCon7, and deletion of FgCON7 resulted in severe defects in conidium production, virulence, sexual development, and vegetative growth. The mycelia of the deletion mutant transformed into chlamydospore-like structures with high chitin level accumulation. Notably, boosting FgABAA expression partially alleviated developmental issues in the FgCON7 deletion mutant. Chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, the chitin synthase gene Fg6550 (FGSG_06550) showed significant upregulation in the FgCON7 deletion mutant, and altering FgCON7 expression affected cell wall integrity. Further research will focus on understanding the behavior of the chitin synthase gene and its regulation by FgCon7 in F. graminearum. This study contributes significantly to our understanding of the genetic pathways that regulate hyphal differentiation and conidiation in this plant pathogenic fungus. IMPORTANCE: The ascomycete fungus Fusarium graminearum is the primary cause of head blight disease in wheat and barley, as well as ear and stalk rot in maize. Given the importance of conidia and ascospores in the disease cycle of F. graminearum, precise spatiotemporal regulation of these biological processes is crucial. In this study, we characterized the Magnaporthe oryzae Con7p ortholog and discovered that FgCon7 significantly influences various crucial aspects of fungal development and pathogenicity. Notably, overexpression of FgABAA partially restored developmental defects in the FgCON7 deletion mutant. ChIP-qPCR analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, our research revealed a clear correlation between FgCon7 and chitin accumulation and the expression of chitin synthase genes. These findings offer valuable insights into the genetic mechanisms regulating conidiation and the significance of mycelial differentiation in this plant pathogenic fungus.


Assuntos
Proteínas Fúngicas , Fusarium , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Esporos Fúngicos , Fatores de Transcrição , Fusarium/genética , Fusarium/patogenicidade , Fusarium/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Quitina Sintase/genética , Quitina Sintase/metabolismo , Quitina/metabolismo , Deleção de Genes
18.
Org Lett ; 26(18): 4008-4012, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38683186

RESUMO

The facile electron transfer catalysis of diaryl diselenides was utilized for the visible-light [4+2] homodimerization of decomposition-prone styrenes. The reaction required only 0.5 mol % TPT+BF4- photocatalyst and 1.5 mol % electron transfer catalyst (ArSe)2. The spontaneous electron transfer capability of diaryl diselenides was demonstrated for the first time, leading to the sequestration of redox-prone radical cation intermediates via electron transfer processes. A variety of polymerization-prone styrenes smoothly underwent the visible-light-promoted [4+2] homodimerization to tetralin derivatives.

19.
Org Lett ; 26(15): 2955-2959, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38567894

RESUMO

An Eosin Y-catalyzed visible light-promoted 1,4-peroxidation-sulfonylation of enynones was achieved to give tetrasubstituted allenes. The photoredox catalysis of Eosin Y allowed the concomitant formation of peroxy and sulfonyl radicals, where the preferential peroxy radical addition to the alkene moiety of enynones resulted in the subsequent α-keto radical-sulfonyl radical cross couplings. The developed photoredox catalysis of Eosin Y demonstrates a regioselective 1,4-diradical addition strategy, opening up a new possibility of diradical functionalization of conjugate systems.

20.
Small ; : e2400975, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618920

RESUMO

As electronic devices for aviation, space, and satellite applications become more sophisticated, built-in energy storage devices also require a wider temperature spectrum. Herein, an all-climate operational, energy and power-dense, flexible, in-plane symmetric pseudocapacitor is demonstrated with utmost operational safety and long cycle life. The device is constructed with interdigital-patterned laser-scribed carbon-supported electrodeposited V5O12·6H2O as a binder-free electrode and a novel high-voltage anti-freezing water-in-salt-hybrid electrolyte. The anti-freezing electrolyte can operate over a wide temperature range of -40-60 °C while offering a stable potential window of ≈2.5 V. The device undergoes rigorous testing under diverse environmental conditions, including rapid and regular temperature and mechanical transition over multiple cycles. Additionally, detailed theoretical simulation studies are performed to understand the interfacial interactions with the active material as well as the local behavior of the anti-freeze electrolyte at different temperatures. As a result, the all-weather pseudocapacitor at 1 A g-1 shows a high areal capacitance of 234.7 mF cm-2 at room temperature and maintains a high capacitance of 129.8 mF cm-2 even at -40 °C. Besides, the cell operates very reliably for over 80 950 cycles with a capacitance of 25.7 mF cm-2 at 10 A g-1 and exhibits excellent flexibility and bendability under different stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA