Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(1): e202313389, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906130

RESUMO

Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8 H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8 H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8 H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3 . An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8 H0.2 towards the formate species is much higher than Cu/BaTiO3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.

2.
Sci Adv ; 9(22): eadf7426, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267366

RESUMO

Al-Zn-Mg alloys are widely used in the transportation industry owing to their high strength-to-weight ratio. In these alloys, the main strengthening mechanism is precipitation hardening that occurs because of the formation of nano-sized precipitates. Herein, an interfacial structure of η4 precipitates, one of the main precipitates in these alloys, is revealed using aberration-corrected scanning transmission electron microscopy and first-principles calculations. These precipitates exhibit a pseudo-periodic steps and bridges. The results of this study demonstrate that the peculiar interface structure of η4/Al relieves the strain energy of η4 precipitates thus stabilizing them. The atomistic role of this interfacial structure in the nucleation and growth of the precipitates is elucidated. This study paves the way for tailoring the mechanical properties of alloys by controlling their precipitation kinetics.

3.
Adv Sci (Weinh) ; 9(32): e2203639, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089656

RESUMO

Overcharging is expected to be one of the solutions to overcome the current energy density limitation of lithium-ion battery cathodes, which will support the rapid growth of the battery market. However, high-voltage charging often poses a major safety threat including fatal incendiary incidents, limiting further application. Numerous researches are dedicated to the disadvantages of the overcharging process; nonetheless, the urgent demand for addressing failure mechanisms is still unfulfilled. Herein, it is revealed that overcharging induces phase heterogeneity into layered and cobalt oxide phases, and consequent "twin-like deformation" in lithium cobalt oxide. The interplay between the uncommon cobalt(III) oxide and the deformation is investigated by revealing the atomistic formation mechanism. Most importantly, abnormal cracking is discovered in the vicinity of the cobalt oxide where structural instability induces substantial contraction. In addition, surface degradation is widely observed in the crack boundary inside the particle. As unintentional overcharging can occur due to local imbalance in state-of-charge in severe operating conditions such as fast charging, the issues on overcharging should be emphasized to large extent and this study provides fundamental knowledge of overcharge by elucidating the crack development mechanism of layered cathodes, which is expected to broaden the horizon into high voltage operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA