Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Gut Microbes ; 16(1): 2350173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738780

RESUMO

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Intestino Delgado , Simbióticos , Humanos , Simbióticos/administração & dosagem , Microbioma Gastrointestinal/fisiologia , Masculino , Adulto , Intestino Delgado/microbiologia , Intestino Delgado/metabolismo , Feminino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Fezes/microbiologia , Adulto Jovem , Probióticos/administração & dosagem , Metaboloma , Voluntários Saudáveis , Análise Espaço-Temporal
2.
Food Sci Nutr ; 11(10): 6199-6212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823127

RESUMO

Human milk oligosaccharides (HMOs) belong to a group of multifunctional glycans that are abundantly present in human breast milk. While health effects of neutral oligosaccharides have been investigated extensively, a lot remains unknown regarding health effects of acidic oligosaccharides, such as the two sialyllactoses (SLs), 3'sialyllactose (3'SL), and 6'sialyllactose (6'SL). We utilized Caenorhabditis elegans (C. elegans) to investigate the effects of SLs on exercise performance. Using swimming as an endurance-type exercise, we found that SLs decrease exhaustion, signifying an increase in endurance that is strongest for 6'SL. Through an unbiased metabolomics approach, we identified changes in energy metabolism that correlated with endurance performance. Further investigation suggested that these metabolic changes were related to adaptations of muscle mitochondria that facilitated a shift from beta oxidation to glycogenolysis during exercise. We found that the effect of SLs on endurance performance required AMPK- (aak-1/aak-2) and adenosine receptor (ador-1) signaling. We propose a model where SLs alter the metabolic status in the gut, causing a signal from the intestine to the nervous system toward muscle cells, where metabolic adaptation increases exercise performance. Together, our results underline the potential of SLs in exercise-associated health and contribute to our understanding of the molecular processes involved in nutritionally-induced health benefits.

3.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770612

RESUMO

Tyrosinase (TYR) plays a key role in the enzymatic reaction that is responsible for a range of unwanted discoloration effects, such as food browning and skin hyperpigmentation. TYR inhibitors could, therefore, be candidates for skin care products that aim to repair pigmentation problems. In this study, we used a metabolomics approach combined with the isobologram analysis to identify anti-TYR compounds within natural resources, and evaluate their possible synergism with each other. Rheum palmatum was determined to be a model plant for observing the effect, of which seven extracts with diverse phytochemicals were prepared by way of pressurized solvent extraction. Each Rheum palmatum extract (RPE) was profiled using nuclear magnetic resonance spectroscopy and its activity of tyrosinase inhibition was evaluated. According to the orthogonal partial least square analysis used to correlate phytochemicals in RPE with the corresponding activity, the goodness of fit of the model (R2 = 0.838) and its predictive ability (Q2 = 0.711) were high. Gallic acid and catechin were identified as the active compounds most relevant to the anti-TYR effect of RPE. Subsequently, the activity of gallic acid and catechin were evaluated individually, and when combined in various ratios by using isobologram analysis. The results showed that gallic acid and catechin in the molar ratios of 9:5 and 9:1 exhibited a synergistic inhibition on TYR, with a combination index lower than 0.77, suggesting that certain combinations of these compounds may prove effective for use in cosmetic, pharmaceutical, and food industries.


Assuntos
Catequina , Rheum , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rheum/química , Ácido Gálico , Compostos Fitoquímicos/farmacologia
4.
Handb Exp Pharmacol ; 277: 117-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318326

RESUMO

Natural products have been the most important source for drug development throughout the human history. Over time, the formulation of drugs has evolved from crude drugs to refined chemicals. In modern drug discovery, conventional natural products lead-finding usually uses a top-down approach, namely bio-guided fractionation. In this approach, the crude extracts are separated by chromatography and resulting fractions are tested for activity. Subsequently, active fractions are further refined until a single active compound is obtained. However, this is a painstakingly slow and expensive process. Among the alternatives that have been developed to improve this situation, metabolomics has proved to yield interesting results having been applied successfully to drug discovery in the last two decades. The metabolomics-based approach in lead-finding comprises two steps: (1) in-depth chemical profiling of target samples, e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and biological data by chemometrics. In the first step of this approach, the target samples are chemically profiled in an untargeted manner to detect as many compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and MS/MS spectrometry are the most common profiling tools. The profile data are correlated with the biological activity with the help of various chemometric methods such as multivariate data analysis. This in-silico analysis has a high potential to replace or complement conventional on-silica bioassay-guided fractionation as it will greatly reduce the number of bioassays, and thus time and costs. Moreover, it may reveal synergistic mechanisms, when present, something for which the classical top-down approach is clearly not suited. This chapter aims to give an overview of successful approaches based on the application of chemical profiling with chemometrics in natural products drug discovery.


Assuntos
Produtos Biológicos , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/química , Descoberta de Drogas/métodos , Produtos Biológicos/análise , Produtos Biológicos/química , Cromatografia Líquida , Metabolômica
5.
J Cannabis Res ; 4(1): 53, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184617

RESUMO

BACKGROUND: The medicinal effects of cannabis varieties on the market cannot be explained solely by the presence of the major cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Evidence for putative entourage effects caused by other compounds present in cannabis is hard to obtain due to the subjective nature of patient experience data. Caenorhabditis elegans (C. elegans) is an objective test system to identify cannabis compounds involved in claimed health and entourage effects. METHODS: From a medicinal cannabis breeding program by MariPharm BV, the Netherlands a set of 12 varieties were selected both THC rich varieties as well as CBD rich varieties. A consecutive extraction process was applied resulting in a non-polar (cannabinoid-rich) and polar (cannabinoid-poor) extract of each variety. The test model C. elegans was exposed to these extracts in a broad set of bioassays for appetite control, body oscillation, motility, and nervous system function. RESULTS: Exposing C. elegans to extracts with a high concentration of cannabinoids (> 1 µg/mL) reduces the life span of C. elegans dramatically. Exposing the nematodes to the low-cannabinoid (< 0.005 µg/mL) polar extracts, however, resulted in significant effects with respect to appetite control, body oscillation, motility, and nervous system-related functions in a dose-dependent and variety-dependent manner. DISCUSSION: C. elegans is a small, transparent organism with a complete nervous system, behavior and is due to its genetic robustness and short life cycle highly suitable to unravel entourage effects of Cannabis compounds. Although C. elegans lacks an obvious CB1 and CB2 receptor it has orthologs of Serotonin and Vanilloid receptor which are also involved in (endo)cannabinoid signaling. CONCLUSION: By using C. elegans, we were able to objectively distinguish different effects of different varieties despite the cannabinoid content. C. elegans seems a useful test system for studying entourage effects, for targeted medicinal cannabis breeding programs and product development.

6.
Metabolites ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802951

RESUMO

Fungal endophytes isolated from two latex bearing species were chosen as models to show their potential to expand their host plant chemical diversity. Thirty-three strains were isolated from Alstonia scholaris (Apocynaceae) and Euphorbia myrsinites (Euphorbiaceae). High performance thin layer chromatography (HPTLC) was used to metabolically profile samples. The selected strains were well clustered in three major groups by hierarchical clustering analysis (HCA) of the HPTLC data, and the chemical profiles were strongly correlated with the strains' colony size. This correlation was confirmed by orthogonal partial least squares (OPLS) modeling using colony size as "Y" variable. Based on the multivariate data analysis of the HPTLC data, the fastest growing strains of each cluster were selected and used for subsequent experiments: co-culturing to investigate interactions between endophytes-phytopathogens, and biotransformation of plant metabolites by endophytes. The strains exhibited a high capacity to fight against fungal pathogens. Moreover, there was an increase in the antifungal activity after being fed with host-plant metabolites. These results suggest that endophytes play a role in plant defense mechanisms either directly or by biotransformation/induction of metabolites. Regarding HPTLC-based metabolomics, it has proved to be a robust approach to monitor the interactions among fungal endophytes, the host plant and potential phytopathogens.

7.
Plant Sci ; 303: 110784, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487359

RESUMO

Phytohormone applications are used to mimic herbivory and can induce plant defences. This study investigated (i) metabolomic changes in leaf tissues of Jacobaea vulgaris and J. aquatica after methyl jasmonate (MeJA) and salicylic acid (SA) applications and (ii) the effects on a leaf-chewing, a leaf-mining and a piercing-sucking herbivore. MeJA treated leaves showed clearly different metabolomic profiles than control leaves, while the differences in metabolomic profiles between SA treated leaves and control leaves were less clear. More NMR peaks increased than decreased after MeJA treatment while this pattern was reversed after SA treatment. The leaf-chewing (Mamestra brassicae) and the leaf-mining herbivores (Liriomyza trifolii) fed less on MeJA-treated leaves compared to control and SA-treated leaves while they fed equally on the latter two. In J. aquatica but not in J. vulgaris, SA treatment reduced feeding damage by the piercing-sucking herbivore (Frankliniella occidentalis). Based on the herbivory and metabolomic data after phytohormone application, we made speculations as follows: For all three herbivore species, plants with high levels of threonine and citric acid showed less herbivory while plants with high levels of glucose showed more herbivory. Herbivory by thrips was lower on plants with high levels of alanine while it was higher on plants with high levels of 3,5-dicaffeoylquinic acid. The plant compounds that related to feeding of piercing-sucking herbivore were further verified with previous independent experiments.


Assuntos
Acetatos/farmacologia , Asteraceae/efeitos dos fármacos , Ciclopentanos/farmacologia , Metaboloma/efeitos dos fármacos , Oxilipinas/farmacologia , Defesa das Plantas contra Herbivoria/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/farmacologia , Animais , Asteraceae/metabolismo , Dípteros , Larva , Mariposas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
8.
Planta ; 251(1): 8, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776674

RESUMO

MAIN CONCLUSION: Local and systemic induction of JA-associated chemical defenses and resistance to western flower thrips in Chrysanthemum are spatially variable and dependent on the site of the JA application. Plants have evolved numerous inducible defense traits to resist or tolerate herbivory, which can be activated locally at the site of the damage, or systemically through the whole plant. Here we investigated how activation of local and systemic chemical responses upon exogenous application of the phytohormone jasmonic acid (JA) varies along the plant canopy in Chrysanthemum, and how these responses correlate with resistance to thrips. Our results showed that JA application reduced thrips damage per plant when applied to all the plant leaves or when locally applied to apical leaves, but not when only basal leaves were locally treated. Local application of JA to apical leaves resulted in a strong reduction in thrips damage in new leaves developed after the JA application. Yet, activation of a JA-associated defensive protein marker, polyphenol oxidase, was only locally induced. Untargeted metabolomic analysis further showed that JA increased the concentrations of sugars, phenylpropanoids, flavonoids and some amino acids in locally induced basal and apical leaves. However, local application of JA to basal leaves marginally affected the metabolomic profiles of systemic non-treated apical leaves, and vice versa. Our results suggest that JA-mediated activation of systemic chemical defense responses is spatially variable and depends on the site of the application of the hormone in Chrysanthemum.


Assuntos
Chrysanthemum/metabolismo , Ciclopentanos/metabolismo , Flores/metabolismo , Oxilipinas/metabolismo
9.
Plant Cell Physiol ; 60(5): 1011-1024, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715458

RESUMO

Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.


Assuntos
Flores/metabolismo , Flores/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Tisanópteros/patogenicidade , Tricomas/metabolismo , Animais , Flores/genética , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Tricomas/genética
10.
Photochem Photobiol Sci ; 18(5): 1138-1146, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768081

RESUMO

Ginsenoside extracts are often used as raw materials for various pharmaceutical, cosmetic and food supplement products. Development of a direct, rapid, cheap, and comprehensive measurement tool for the quality assessment of ginsenoside extracts, and indeed all herbal extracts, is urgently needed. In addition, a bioactivity-based assessment should be linked with quality control. In this report, we try to develop a novel quality control tool using ginsenoside extracts as an example. High-performance liquid chromatography (HPLC) was used to detect nine principal ginsenosides in 11 batches of ginsenoside extracts. Delayed luminescence (DL) was used to analyze the same ginsenoside extract samples. DL measurements showed the same results in terms of differentiating 11 ginsenoside extract samples compared with chemical analysis, and DL properties could be closely linked to index ginsenosides in the quality control of ginsenoside extracts. Next, a zebrafish tail-fin amputation model was used to study differences in anti-inflammatory effect between the ginsenoside extract batches. The results indicate that both chemical analysis and DL measurements could partially reflect biological activity. Thus, DL may serve as a rapid, direct, sensitive, and systemic tool for studying the overall properties of ginsenoside extracts. Our proposal for linking bioactivities as a tool for evaluation of the quality of ginsenoside extracts opens a new direction for quality control.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ginsenosídeos/química , Luminescência , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/uso terapêutico , Cromatografia Líquida de Alta Pressão , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/uso terapêutico , Inflamação/tratamento farmacológico , Modelos Biológicos , Controle de Qualidade , Peixe-Zebra
11.
J Exp Bot ; 70(1): 315-327, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304528

RESUMO

Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.


Assuntos
Antibiose/efeitos da radiação , Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/efeitos da radiação , Tisanópteros/fisiologia , Raios Ultravioleta , Animais , Relação Dose-Resposta à Radiação , Feminino , Solanum lycopersicum/fisiologia , Masculino , Metabolismo Secundário , Fatores de Tempo , Tricomas
12.
Front Plant Sci ; 9: 1417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344528

RESUMO

Western flower thrips (WFT) Frankliniella occidentalis (Pergande) is a key agricultural pest of cultivated tomatoes. Induced host plant resistance by activating jasmonic acid (JA) signaling pathway constitutes a promising method for WFT control. The phytotoxin coronatine (COR), produced by Pseudomonas syringae pv. tomato DC3000 (Pst), mimics the plant hormone JA-Isoleucine and can promote resistance against herbivorous arthropods. Here we determined the effect of Pst and COR on tomato resistance against WFT, induction of JA and salicylic acid (SA) associated defenses, and plant chemistry. Additionally, we investigated the presence of other components in Pst-derived and filtered culture medium, and their interactive effect with COR on tomato resistance to WFT. Our results showed that infiltration of COR or Pst reduced WFT feeding damage in tomato plants. COR and Pst induced the expression of JA-associated gene and protein marker. COR also induced expression of a SA-related responsive gene, although at much less magnitude. Activation of JA defenses in COR and Pst infiltrated plants did not affect density of type VI leaf trichomes, which are defenses reported to be induced by JA. An untargeted metabolomic analysis showed that both treatments induced strong changes in infiltrated leaves, but leaf responses to COR or Pst slightly differed. Application of the Pst-derived and filtered culture medium, containing COR but not viable Pst, also increased tomato resistance against WFT confirming that the induction of tomato defenses does not require a living Pst population to be present in the plant. Infiltration of tomato plants with low concentrations of COR in diluted Pst-derived and filtered culture medium reduced WFT feeding damage in a greater magnitude than infiltration with an equivalent amount of pure COR indicating that other elicitors are present in the medium. This was confirmed by the fact that the medium from a COR-mutant of Pst also strongly reduced silver damage. In conclusion, our results indicate that induction of JA defenses by COR, Pst infection, the medium of Pst and the medium of a Pst COR- mutant increased resistance against WFT. This was not mediated by the reinforcement of leaf trichome densities, but rather the induction of chemical defenses.

13.
Plant Cell Physiol ; 59(12): 2462-2475, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124946

RESUMO

In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions.


Assuntos
Resistência à Doença , Luz , Feromônios/metabolismo , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Tisanópteros/fisiologia , Tricomas/metabolismo , Ácido Abscísico/metabolismo , Animais , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Metabolômica , Mutação/genética , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/metabolismo , Compostos Orgânicos Voláteis/análise
14.
Phytochemistry ; 155: 37-44, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071382

RESUMO

Resins are one of the first sites of interaction between plants and biotic and abiotic factors. Despite their evident morphological and chemical differentiation from other plant organs, the detailed correlation between resins and biological or environmental factors is not yet clear. In this study, 1H nuclear magnetic resonance (NMR), gas chromatography coupled with mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC)-based profiling techniques were applied to the metabolic characterisation of plant resins of different species and season of collection, using samples from five different species that were collected during early and late spring. The 1H NMR analysis confirmed the main metabolic groups in the resins to be terpenoids and further GC-MS analysis revealed a notable chemical variation between the species and collection periods. Abies grandis displayed a significant differentiation from the other species, showing a higher number of monoterpenes. The HPTLC-based profiling method hyphenated with multivariate data analysis (MVDA) also showed a clear separation confirming the GC-MS terpenoidal profiling results. Additionally, the unknown compounds were obtained by preparative TLC for identification. Based on the results of the three analytical platforms, it was concluded that the major difference in chemical composition of pine species was between species rather than the collection period. Nonetheless, the chemical profiles of resins from different species and collection periods can be well discriminated and correlated to mono- and sesquiterpenes in the case of species and diterpenes for the collection periods.


Assuntos
Diterpenos/análise , Pinus/química , Resinas Vegetais/metabolismo , Sesquiterpenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Análise Multivariada , Pinus/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Resinas Vegetais/química
15.
Methods Mol Biol ; 1730: 317-328, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29363085

RESUMO

Fecal analysis can generate data that is relevant for the exploration of gut microbiota and their relationship with the host. Nuclear magnetic resonance (NMR) spectroscopy is an excellent tool for the profiling of fecal extracts as it enables the simultaneous detection of various metabolites from a broad range of chemical classes including, among others, short-chain fatty acids, organic acids, amino acids, bile acids, carbohydrates, amines, and alcohols. Compounds present at low µM concentrations can be detected and quantified with a single measurement. Moreover, NMR-based profiling requires a relatively simple sample preparation. Here we describe the three main steps of the general workflow for the NMR-based profiling of feces: sample preparation, NMR data acquisition, and data analysis.


Assuntos
Fezes/química , Metabolômica/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Sensibilidade e Especificidade , Fluxo de Trabalho
16.
Sci Rep ; 7(1): 3777, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630440

RESUMO

The spread of multidrug-resistant Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA), has shortened the useful life of anti-staphylococcal drugs enormously. Two approaches can be followed to address this problem: screening various sources for new leads for antibiotics or finding ways to disable the resistance mechanisms to existing antibiotics. Plants are resistant to most microorganisms, but despite extensive efforts to identify metabolites that are responsible for this resistance, no substantial progress has been made. Plants possibly use multiple strategies to deal with microorganisms that evolved over time. For this reason, we searched for plants that could potentiate the effects of known antibiotics. From 29 plant species tested, Cytisus striatus clearly showed such an activity and an NMR-based metabolomics study allowed the identification of compounds from the plant extracts that could act as antibiotic adjuvants. Isoflavonoids were found to potentiate the effect of ciprofloxacin and erythromycin against MRSA strains. For the structure-activity relationship (SAR), 22 isoflavonoids were assessed as antibiotic adjuvants. This study reveals a clear synergy between isoflavonoids and the tested antibiotics, showing their great potential for applications in the clinical therapy of infections with antibiotic-resistant microorganisms such as MRSA.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Cytisus/química , Eritromicina/farmacologia , Isoflavonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Folhas de Planta/química , Antibacterianos/química , Ciprofloxacina/agonistas , Sinergismo Farmacológico , Eritromicina/agonistas , Isoflavonas/agonistas , Isoflavonas/química
17.
BMC Infect Dis ; 17(1): 275, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412936

RESUMO

BACKGROUND: Analysis of the stool samples is an essential part of routine diagnostics of the helminthes infections. However, the standard methods such Kato and Kato-Katz utilize only a fraction of the information available. Here we present a method based on the nuclear magnetic resonance spectroscopy (NMR) which could be auxiliary to the standard procedures by evaluating the complex metabolic profiles (or phenotypes) of the samples. METHOD: The samples were collected over the period of June-July 2015, frozen at -20 °C at the site of collection and transferred within four hours for the permanent storage at -80 °C. Fecal metabolites were extracted by mixing aliquots of about 100 mg thawed stool material with 0.5 mL phosphate buffer saline, followed by the homogenization and centrifugations steps. All NMR data were recorded using a Bruker 600 MHz AVANCE II spectrometer equipped with a 5 mm triple resonance inverse cryoprobe and a z-gradient system. RESULTS: Here we report an optimized method for NMR based metabolic profiling/phenotyping of the stools samples. Overall, 62 metabolites were annotated in the pool sample using the 2D NMR spectra and the Bruker Biorefcode database. The compounds cover a wide range of the metabolome including amino acids and their derivatives, short chain fatty acids (SCFAs), carboxylic acids and their derivatives, amines, carbohydrates, purines, alcohols and others. An exploratory analysis of the metabolic profiles reveals no strong trends associated with the infection status of the patients. However, using the penalized regression as a variable selection method we succeeded in finding a subset of eleven variables which enables to discriminate the patients on basis of their infections status. CONCLUSIONS: A simple method for metabolic profiling/phenotyping of the stools samples is reported and tested on a pilot opisthorchiasis cohort. To our knowledge this is the first report of a NMR-based feces analysis in the context of the helminthic infections.


Assuntos
Fezes/química , Fezes/parasitologia , Helmintíase/parasitologia , Helmintos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Metabolômica , Adulto , Aminas/análise , Aminas/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Feminino , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
18.
Drug Discov Today Technol ; 13: 11-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26190678

RESUMO

Metabolomics is a high throughput analytical technique used to globally measure low molecular weight metabolites, allowing simultaneous metabolic comparison of different biological samples and thus highlighting differentially produced compounds as potential biomarkers. Although microbes are renowned as prolific sources of antibiotics, the traditional approach for new anti-infectives discovery is time-consuming and labor-intensive. In this review, the use of NMR- or MS-based metabolomics is proposed as an efficient approach to find antimicrobials in microbial single- or co-cultures.


Assuntos
Antibacterianos , Produtos Biológicos , Descoberta de Drogas/métodos , Metabolômica/métodos , Cromatografia Líquida , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
19.
BMC Plant Biol ; 15: 142, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26070309

RESUMO

BACKGROUND: The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. RESULTS: Twenty three MOTUs were obtained, representing 6 fungal classes. Fungi from green pods were cultured on mature green pod based media for 30 days followed by (1)H NMR and HPLC-DAD analysis. All fungi from pods consumed metabolized vanilla flavor phenolics. Though Fusarium proliferatum was recovered more often (37.6% of the isolates), it is Pestalotiopsis microspora (3.0%) that increased the absolute amounts (quantified by (1)H NMR in µmol/g DW green pods) of vanillin (37.0 × 10(-3)), vanillyl alcohol (100.0 × 10(-3)), vanillic acid (9.2 × 10(-3)) and p-hydroxybenzoic acid (87.9 × 10(-3)) by significant amounts. CONCLUSIONS: All plants studied contained endophytic fungi and the isolation of the endophytes was conducted from plant organs at nine sites in Réunion Island including under shade house and undergrowth conditions. Endophytic variation occured between cultivation practices and the type of organ. Given the physical proximity of fungi inside pods, endophytic biotransformation may contribute to the complexity of vanilla flavors.


Assuntos
Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Vanilla/microbiologia , Biodiversidade , Biotransformação/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Meios de Cultura/farmacologia , Geografia , Metaboloma/efeitos dos fármacos , Dados de Sequência Molecular , Odorantes , Especificidade de Órgãos/efeitos dos fármacos , Filogenia , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética , Reunião , Vanilla/efeitos dos fármacos
20.
Crit Rev Food Sci Nutr ; 54(3): 373-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24188308

RESUMO

The development of obesity is related to the regulation of energy intake, energy expenditure, and energy storage in the body. Increasing energy expenditure by inducing lipolysis followed by fat oxidation is one of the alternatives which could help to reverse this increasingly widespread condition. Currently, there is no approved drug targeting on stimulation of energy expenditure available. The use of herbal medicines has become a preferred alternative, supported by the classical consensus on the innocuity of herbal medicine vs synthetic drugs, something that often lacks a scientific basis (ban on Ephedra, for example). The inclusion of functional food in the daily diet has also been promoted although its efficacy requires further investigation. This review summarizes the results of recent work focused on the investigation of edible plant materials targeted at various important pathways related to stimulation of energy expenditure. The aim is to evaluate a number of plants that may be of interest for further studies because of their potential to provide novel lead compounds or functional foods which may be used to combat obesity, but require further studies to evaluate their antiobesity activity in humans.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Plantas Comestíveis/química , Ingestão de Energia/efeitos dos fármacos , Exercício Físico , Alimento Funcional , Humanos , Obesidade/prevenção & controle , Termogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...