Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 78: 103453, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824800

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a cardiomyopathy that is predominantly inherited and characterized by cardiac arrhythmias and structural abnormalities. TMEM43 (transmembrane protein 43) is one of the well-known genetic culprits behind ACM. In this study, we successfully generated an induced pluripotent stem cell (iPSC) line, YCMi010-A, derived from a male patient diagnosed with ACM. Although these iPSCs harbored a heterozygous intronic splice variant, TMEM43 c.443-2A > G, they still displayed normal cellular morphology and were confirmed to express pluripotency markers. YCMi010-A iPSC line is a promising model for investigating the pathomechanisms associated with ACM and exploring potential therapeutic strategies.

3.
Am J Reprod Immunol ; 90(2): e13744, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491916

RESUMO

PROBLEM: Direct interactions between macrophages and lymphatic vessels have been shown previously. In pre-eclampsia (PE), macrophages are dominantly polarized into a proinflammatory M1 phenotype and lymphangiogenesis is defective in the decidua. Here, we investigated whether decidual lymphatic endothelial cells (dLECs) affect macrophage polarization in PE. METHOD OF STUDY: THP-1 macrophages were cocultured with dLECs or cultured in the conditioned medium (CM) of dLECs. Macrophage polarization was measured using flow cytometry. Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in dLECs was measured using qRT-PCR and ELISA. The activation of nuclear translocation of nuclear factor-κ (NF-κB), an upstream signaling molecule of GM-CSF, was assessed by immunocytochemical localization of p65. Through GM-CSF knockdown and NF-κB inhibition in dLEC, we evaluated whether the GM-CSF/NF-κB pathway of PE dLEC affects decidual macrophage polarization. RESULTS: The ratio of inflammatory M1 macrophages with HLA-DR+ /CD80+ markers significantly increased following coculturing with PE dLECs or culturing in PE dLEC CM, indicating that the PE dLEC-derived soluble factor acts in a paracrine manner. GM-CSF expression was significantly upregulated in PE dLECs. Recombinant human GM-CSF induced macrophage polarization toward an M1-like phenotype, whereas its knockdown in PE dLECs suppressed it, suggesting PE dLECs induce M1 macrophage polarization by secreting GM-CSF. The NF-κB p65 significantly increased in PE dLECs compared to the control, and pretreatment with an NF-κB inhibitor significantly suppressed GM-CSF production from PE dLECs. CONCLUSIONS: In PE, dLECs expressing high levels of GM-CSF via the NF-κB-dependent pathway play a role in inducing decidual M1 macrophage polarization.


Assuntos
NF-kappa B , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , NF-kappa B/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pré-Eclâmpsia/metabolismo , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos
4.
BMB Rep ; 56(7): 398-403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37220907

RESUMO

Natural killer (NK) cells are an essential part of the innate immune system that helps control infections and tumors. Recent studies have shown that Vorinostat, a histone deacetylase (HDAC) inhibitor, can cause significant changes in gene expression and signaling pathways in NK cells. Since gene expression in eukaryotic cells is closely linked to the complex three-dimensional (3D) chromatin architecture, an integrative analysis of the transcriptome, histone profiling, chromatin accessibility, and 3D genome organization is needed to gain a more comprehensive understanding of how Vorinostat impacts transcription regulation of NK cells from a chromatin-based perspective. The results demonstrate that Vorinostat treatment reprograms the enhancer landscapes of the human NK-92 NK cell line while overall 3D genome organization remains largely stable. Moreover, we identified that the Vorinostat-induced RUNX3 acetylation is linked to the increased enhancer activity, leading to elevated expression of immune response-related genes via long-range enhancerpromoter chromatin interactions. In summary, these findings have important implications in the development of new therapies for cancer and immune-related diseases by shedding light on the mechanisms underlying Vorinostat's impact on transcriptional regulation in NK cells within the context of 3D enhancer network. [BMB Reports 2023; 56(7): 398-403].


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Humanos , Vorinostat/farmacologia , Acetilação , Ácidos Hidroxâmicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Cromatina , Células Matadoras Naturais , Linhagem Celular Tumoral
5.
Nat Commun ; 14(1): 1277, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882470

RESUMO

Dendritic cells are antigen-presenting cells orchestrating innate and adaptive immunity. The crucial role of transcription factors and histone modifications in the transcriptional regulation of dendritic cells has been extensively studied. However, it is not been well understood whether and how three-dimensional chromatin folding controls gene expression in dendritic cells. Here we demonstrate that activation of bone marrow-derived dendritic cells induces extensive reprogramming of chromatin looping as well as enhancer activity, both of which are implicated in the dynamic changes in gene expression. Interestingly, depletion of CTCF attenuates GM-CSF-mediated JAK2/STAT5 signaling, resulting in defective NF-κB activation. Moreover, CTCF is necessary for establishing NF-κB-dependent chromatin interactions and maximal expression of pro-inflammatory cytokines, which prime Th1 and Th17 cell differentiation. Collectively, our study provides mechanistic insights into how three-dimensional enhancer networks control gene expression during bone marrow-derived dendritic cells activation, and offers an integrative view of the complex activities of CTCF in the inflammatory response of bone marrow-derived dendritic cells.


Assuntos
Medula Óssea , Fator de Ligação a CCCTC , Células Dendríticas , NF-kappa B , Cromatina , Sequências Reguladoras de Ácido Nucleico
6.
Stem Cell Res ; 67: 103048, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801602

RESUMO

Cardiac muscle troponin T protein binds to tropomyosin and regulates the calcium-dependent actin-myosin interaction on thin filaments in cardiomyocytes. Recent genetic studies have revealed that TNNT2 mutations are strongly linked to dilated cardiomyopathy (DCM). In this study, we generated YCMi007-A, a human induced pluripotent stem cell (hiPSC) line from a DCM patient with a p. Arg205Trp mutation in the TNNT2 gene. The YCMi007-A cells show high expression of pluripotent markers, normal karyotype, and differentiation into three germ layers. Thus, YCMi007-A-an established iPSC-could be useful for the investigation of DCM.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiomiopatia Dilatada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Troponina T/genética , Troponina T/metabolismo , Heterozigoto , Mutação
7.
Stem Cell Res ; 63: 102874, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917599

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease and is characterized by hypertrophy of the left ventricle. We reprogrammed peripheral blood mononuclear cells (PBMCs) from a HCM patient into pluripotent stem cells (iPSC) (YCMi006-A) carrying a heterozygous c.1029C > G mutation in ACTA1. The YCMi006-A cells expressed high levels of pluripotent markers, had a normal 46XX karyotype and demonstrated the capacity to differentiate into derivatives of all three germ layers. This cell line can be a valuable tool for investigating the pathogenesis of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Linhagem Celular , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Hipertrófica/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética
8.
Nucleic Acids Res ; 50(1): 207-226, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34931241

RESUMO

CTCF is crucial to the organization of mammalian genomes into loop structures. According to recent studies, the transcription apparatus is compartmentalized and concentrated at super-enhancers to form phase-separated condensates and drive the expression of cell-identity genes. However, it remains unclear whether and how transcriptional condensates are coupled to higher-order chromatin organization. Here, we show that CTCF is essential for RNA polymerase II (Pol II)-mediated chromatin interactions, which occur as hyperconnected spatial clusters at super-enhancers. We also demonstrate that CTCF clustering, unlike Pol II clustering, is independent of liquid-liquid phase-separation and resistant to perturbation of transcription. Interestingly, clusters of Pol II, BRD4, and MED1 were found to dissolve upon CTCF depletion, but were reinstated upon restoration of CTCF, suggesting a potent instructive function for CTCF in the formation of transcriptional condensates. Overall, we provide evidence suggesting that CTCF-mediated chromatin looping acts as an architectural prerequisite for the assembly of phase-separated transcriptional condensates.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Células HCT116 , Humanos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Cell Mol Gastroenterol Hepatol ; 12(5): 1761-1787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358714

RESUMO

BACKGROUND & AIMS: The liver is the major organ for metabolizing lipids, and malfunction of the liver leads to various diseases. Nonalcoholic fatty liver disease is rapidly becoming a major health concern worldwide and is characterized by abnormal retention of excess lipids in the liver. CCCTC-binding factor (CTCF) is a highly conserved zinc finger protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. Here, we sought to determine the physiological role of CTCF in hepatic lipid metabolism. METHODS: We generated liver-specific, CTCF-ablated and/or CD36 whole-body knockout mice. Overexpression or knockdown of peroxisome proliferator-activated receptor (PPAR)γ in the liver was achieved using adenovirus. Mice were examined for development of hepatic steatosis and inflammation. RNA sequencing was performed to identify genes affected by CTCF depletion. Genome-wide occupancy of H3K27 acetylation, PPARγ, and CTCF were analyzed by chromatin immunoprecipitation sequencing. Genome-wide chromatin interactions were analyzed by in situ Hi-C. RESULTS: Liver-specific, CTCF-deficient mice developed hepatic steatosis and inflammation when fed a standard chow diet. Global analysis of the transcriptome and enhancer landscape revealed that CTCF-depleted liver showed enhanced accumulation of PPARγ in the nucleus, which leads to increased expression of its downstream target genes, including fat storage-related gene CD36, which is involved in the lipid metabolic process. Hepatic steatosis developed in liver-specific, CTCF-deficient mice was ameliorated by repression of PPARγ via pharmacologic blockade or adenovirus-mediated knockdown, but hardly rescued by additional knockout of CD36. CONCLUSIONS: Our data indicate that liver-specific deletion of CTCF leads to hepatosteatosis through augmented PPARγ DNA-binding activity, which up-regulates its downstream target genes associated with the lipid metabolic process.


Assuntos
Fator de Ligação a CCCTC/deficiência , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos/genética , Fenótipo
10.
Oncol Lett ; 21(3): 226, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33613715

RESUMO

One of the most commonly used drugs in chemotherapy, 5-fluorouracil (5-FU) has been shown to be effective in only 10-15% of patients with colon cancer. Thus, studies of the mechanisms affecting 5-FU sensitivity in these patients are necessary. The tumor suppressor protein p53 is a transcription factor that serves important roles in cell apoptosis by regulating the cell cycle. It has also been characterized as a key factor influencing drug sensitivity. Furthermore, accessible chromatin is a hallmark of active DNA regulatory elements and functions as a crucial epigenetic factor regulating cancer mechanisms. The present study assessed the genetic regulatory landscape in colon cancer by performing RNA sequencing and Assay for Transposase-Accessible Chromatin sequencing, and investigated the effects of 5-FU on chromatin accessibility and gene expression. Notably, while treatment with 5-FU mediated global increases in chromatin accessibility, chromatin organization in several genomic regions differed depending on the expression status of p53. Since the occupancy of p53 does not overlap with accessible chromatin regions, the 5-FU-mediated changes in chromatin accessibility were not regulated by direct binding of p53. In the p53-expressing condition, the 5-FU-mediated accessible chromatin region was primarily associated with genes encoding cell death pathways. Additionally, 5-FU was revealed to induce open chromatin conformation at regions containing binding motifs for AP-1 family transcription factors, which may drive expression of apoptosis pathway genes. In conclusion, expression of p53 may confer 5-FU sensitivity by regulating chromatin accessibility of distinct genes associated with cell apoptosis in a transcription-independent manner.

11.
Am J Transl Res ; 11(9): 6102-6109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632578

RESUMO

Increasing evidence implicates chromatin structure and epigenetic regulation in various human developmental disorders, including facial abnormalities and intellectual disability. Mutations in CCCTC-binding factor (CTCF) demonstrate its role in craniofacial development, but early lethality precludes the use of Ctcf mutant mice for phenotypic investigations. In this study, we deleted Ctcf specifically in neural crest cells, the multipotent cells that give rise to many structures of the skeleton and connective tissues in the developing head. Although the pharyngeal arches were initially morphologically normal, many of the neural crest cell-derived skeletal and non-skeletal components were truncated in the Wnt1-Cre; Ctcffl/fl mutant mice. The expression level of chondrogenic and osteogenic-related genes were significantly decreased. Our results implicate CTCF in two distinct events in craniofacial development; first, in the regulation of outgrowth and morphogenesis by cell survival and proliferation, and second, in the differentiation of the facial skeleton. Our findings highlight the important contribution of CTCF to craniofacial pathologies.

12.
Proc Natl Acad Sci U S A ; 116(17): 8289-8294, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948645

RESUMO

DNA-reactive compounds are harnessed for cancer chemotherapy. Their genotoxic effects are considered to be the main mechanism for the cytotoxicity to date. Because this mechanism preferentially affects actively proliferating cells, it is postulated that the cytotoxicity is specific to cancer cells. Nonetheless, they do harm normal quiescent cells, suggesting that there are other cytotoxic mechanisms to be uncovered. By employing doxorubicin as a representative DNA-reactive compound, we have discovered a cytotoxic mechanism that involves a cellular noncoding RNA (ncRNA) nc886 and protein kinase R (PKR) that is a proapoptotic protein. nc886 is transcribed by RNA polymerase III (Pol III), binds to PKR, and prevents it from aberrant activation in most normal cells. We have shown here that doxorubicin evicts Pol III from DNA and, thereby, shuts down nc886 transcription. Consequently, the instantaneous depletion of nc886 provokes PKR and leads to apoptosis. In a short-pulse treatment of doxorubicin, these events are the main cause of cytotoxicity preceding the DNA damage response in a 3D culture system as well as the monolayer cultures. By identifying nc886 as a molecular signal for PKR to sense doxorubicin, we have provided an explanation for the conundrum why DNA-damaging drugs can be cytotoxic to quiescent cells that have the competent nc886/PKR pathway.


Assuntos
Apoptose/efeitos dos fármacos , DNA/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido , Linhagem Celular , Doxorrubicina/farmacologia , Humanos , MicroRNAs/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
13.
Biochem Biophys Res Commun ; 512(4): 896-901, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929920

RESUMO

The cochlea in the mammalian inner ear is a sensitive and sharply organized sound-detecting structure. The proper specification of neurosensory-competent domain in the otic epithelium is required for the formation of mature neuronal and sensory domains. Genetic studies have provided many insights into inner ear development, but there have been few epigenetic studies of inner ear development. CTCF is an epigenetic factor that plays a pivotal role in the organization of global chromatin conformation. To determine the role of CTCF in the otic sensory formation, we made a conditional knockout of Ctcf in the developing otic epithelium by crossing Ctcffl/fl mice with Pax2-Cre mice. Ctcf deficiency resulted in extra rows of auditory hair cells in the shortened cochlea on mouse embryonic day 14.5 (E14.5) and E17.5. The massive and ectopic expression of sensory specifiers such as Jag1 and Sox2 indicated that the sensory domain was expanded in the Ctcf-deficient cochlea. Other regulators of the sensory domain such as Bmp4, Gata3, and Fgf10 were not affected. These results suggest that CTCF plays a role in the regulation of the sensory domain in mammalian cochlear development.


Assuntos
Fator de Ligação a CCCTC/genética , Cóclea/embriologia , Cóclea/fisiopatologia , Animais , Proteína Morfogenética Óssea 4/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Fator 10 de Crescimento de Fibroblastos/genética , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Proteína Jagged-1/genética , Camundongos Knockout , Fator de Transcrição PAX2/genética , Fatores de Transcrição SOXB1/genética
14.
Biochem Biophys Res Commun ; 503(4): 2646-2652, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30107916

RESUMO

Auditory hair cells play an essential role in hearing. These cells convert sound waves, mechanical stimuli, into electrical signals that are conveyed to the brain via spiral ganglion neurons. The hair cells are located in the organ of Corti within the cochlea. They assemble in a special arrangement with three rows of outer hair cells and one row of inner hair cells. The proper differentiation and preservation of auditory hair cells are essential for acquiring and maintaining hearing function, respectively. Many genetic regulatory mechanisms underlying hair-cell differentiation and maintenance have been elucidated to date. However, the role of epigenetic regulation in hair-cell differentiation and maintenance has not been definitively demonstrated. CTCF is an essential epigenetic component that plays a primary role in the organization of global chromatin architecture. To determine the role of CTCF in mammalian hair cells, we specifically deleted Ctcf in developing hair cells by crossing Ctcffl/fl mice with Gfi1Cre/+ mice. Gfi1Cre; Ctcffl/fl mice did not exhibit obvious developmental defects in hair cells until postnatal day 8. However, at 3 weeks, the Ctcf deficiency caused intermittent degeneration of the stereociliary bundles of outer hair cells, resulting in profound hearing impairment. At 5 weeks, most hair cells were degenerated in Gfi1Cre; Ctcffl/fl mice, and defects in other structures of the organ of Corti, such as the tunnel of Corti and Nuel's space, became apparent. These results suggest that CTCF plays an essential role in maintaining hair cells and hearing function in mammalian cochlea.


Assuntos
Fator de Ligação a CCCTC/genética , Epigênese Genética , Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Ligação a CCCTC/deficiência , Diferenciação Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/patologia , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Gânglio Espiral da Cóclea/patologia , Estereocílios/metabolismo , Estereocílios/patologia
15.
Mol Cells ; 41(7): 695-702, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30008200

RESUMO

The inner ear is a complex sensory organ responsible for hearing and balance. Formation of the inner ear is dependent on tight regulation of spatial and temporal expression of genes that direct a series of developmental processes. Recently, epigenetic regulation has emerged as a crucial regulator of the development of various organs. However, what roles higher-order chromatin organization and its regulator molecules play in inner ear development are unclear. CCCTC-binding factor (CTCF) is a highly conserved 11-zinc finger protein that regulates the three-dimensional architecture of chromatin, and is involved in various gene regulation processes. To delineate the role of CTCF in inner ear development, the present study investigated inner ear-specific Ctcf knockout mouse embryos (Pax2-Cre; Ctcffl/fl ). The loss of Ctcf resulted in multiple defects of inner ear development and severely compromised otic neurogenesis, which was partly due to a loss of Neurog1 expression. Furthermore, reduced Neurog1 gene expression by CTCF knockdown was found to be associated with changes in histone modification at the gene's promoter, as well as its upstream enhancer. The results of the present study demonstrate that CTCF plays an essential role in otic neurogenesis by modulating histone modification in the Neurog1 locus.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Ligação a CCCTC/metabolismo , Orelha Interna/inervação , Loci Gênicos , Histonas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurogênese , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Orelha Interna/embriologia , Orelha Interna/patologia , Embrião de Mamíferos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Lisina/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Tretinoína/farmacologia
16.
Sci Rep ; 8(1): 7706, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769546

RESUMO

Although basophils and mast cells share similar phenotypic and functional properties, little is known about the difference in the initial Th2 immune responses of these cells following exposure to proteolytic allergens. Here, we investigated the mechanisms of Th2-mediated immune responses in mouse bone marrow-derived basophils (BMBs) and mast cells (BMMCs) via stimulation with the cysteine protease allergen Der f 1. Our results showed that Th2 cytokines were induced from BMBs by active recombinant Der f 1 (rDer f 1 independently with Toll-like receptor (TLR) 2 and TLR4. Although both BMBs and BMMCs expressed protease-activated receptors on their surfaces, PAR expression following exposure to rDer f 1 was altered only in basophils. G protein-coupled receptors in basophils were found to be associated with interleukin (IL)-4 and IL-13 production from BMBs upon Der f 1 treatment. Secretion of Th2 cytokines from rDer f 1-treated basophils was mediated by G protein ßγ and phosphatidylinositol 3-kinase γ through the extracellular signal-regulated kinase and c-Jun N-terminal kinase pathways. These findings provide insights into the roles of cysteine proteases in Th2 immune responses, such as allergic diseases, and improve our understanding of the mechanisms of Th2 cytokine production.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Basófilos/imunologia , Cisteína Endopeptidases/imunologia , Hipersensibilidade/imunologia , Mastócitos/imunologia , Células Th2/imunologia , Animais , Basófilos/metabolismo , Células Cultivadas , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Th2/metabolismo , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia
17.
Cell Death Dis ; 9(6): 633, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795372

RESUMO

We have previously reported that FAM188B showed significant differential exon usage in cancers (NCBI GEO GSE30727), but the expression and function of FAM188B is not well characterized. In the present study, we explored the functions of FAM188B by a knockdown strategy, using siRNAs specific for FAM188B in colon cancer cell lines. FAM188B is a novel gene that encodes a protein that is evolutionarily conserved among mammals. Its mRNA has been found to be highly expressed in most solid tumors, including colorectal cancer. FAM188B knockdown induced cell growth inhibition due to an increase in apoptosis in colon cancer cell lines. Interestingly, siFAM188B treatment induced the upregulation and activation of p53, and consequently increased p53-regulated pro-apoptotic proteins, PUMA and BAX. Proteomic analysis of FAM188B immunocomplexes revealed p53 and USP7 as putative FAM188B-interacting proteins. Deletion of the putative USP7-binding motif in FAM188B reduced complex formation of FAM188B with USP7. It is noteworthy that FAM188B knockdown resulted in a decrease in overall ubiquitination in the p53 immunocomplexes, as well as p53 ubiquitination, because USP7 is involved in p53 deubiquitination. FAM188B knockdown inhibited both colony formation and anchorage-independent growth in vitro. In addition, FAM188B knockdown by siRNA reduced tumor growth in xenografted mice, with an increase in p53 proteins. Taken together, our data suggest that FAM188B is a putative oncogene that functions via interaction with USP7. Therefore, control of FAM188B could be a possible target to inhibit tumor growth.


Assuntos
Proteínas Nucleares/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos Nus , Proteínas Nucleares/genética , Ligação Proteica , Estabilidade Proteica , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
18.
Gastroenterology ; 154(4): 1047-1060, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229400

RESUMO

BACKGROUND AND AIMS: CD4+CD25+Foxp3+ T-regulatory (Treg) cells control immune responses and maintain immune homeostasis. However, under inflammatory conditions, Treg cells produce cytokines that promote inflammation. We investigated production of tumor necrosis factor (TNF) by Treg cells in patients with acute hepatitis A (AHA), and examined the characteristics of these cells and association with clinical factors. METHODS: We analyzed blood samples collected from 63 patients with AHA at the time of hospitalization (and some at later time points) and 19 healthy donors in South Korea. Liver tissues were collected from patients with fulminant AHA during liver transplantation. Peripheral blood mononuclear cells were isolated from whole blood and lymphocytes were isolated from liver tissues and analyzed by flow cytometry. Cytokine production from Treg cells (CD4+CD25+Foxp3+) was measured by immunofluorescence levels following stimulation with anti-CD3 and anti-CD28. Epigenetic stability of Treg cells was determined based on DNA methylation patterns. Phenotypes of Treg cells were analyzed by flow cytometry and an RORγt inhibitor, ML-209, was used to inhibit TNF production. Treg cell suppression assay was performed by co-culture of Treg-depleted peripheral blood mononuclear cells s and isolated Treg cells. RESULTS: A higher proportion of CD4+CD25+Foxp3+ Treg cells from patients with AHA compared with controls produced TNF upon stimulation with anti-CD3 and anti-CD28 (11.2% vs 2.8%). DNA methylation analysis confirmed the identity of the Treg cells. TNF-producing Treg cells had features of T-helper 17 cells, including up-regulation of RORγt, which was required for TNF production. The Treg cells had reduced suppressive functions compared with Treg cells from controls. The frequency of TNF-producing Treg cells in AHA patients' blood correlated with their serum level of alanine aminotransferase. CONCLUSIONS: Treg cells from patients with AHA have altered functions compared with Treg cells from healthy individuals. Treg cells from patients with AHA produce higher levels of TNF, gain features of T-helper 17 cells, and have reduced suppressive activity. The presence of these cells is associated with severe liver injury in patients with AHA.


Assuntos
Hepatite A/metabolismo , Fígado/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doença Aguda , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apirase/imunologia , Apirase/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Metilação de DNA , Epigênese Genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Hepatite A/diagnóstico , Hepatite A/imunologia , Hepatite A/virologia , Vírus da Hepatite A/imunologia , Vírus da Hepatite A/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/virologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/imunologia
19.
J Invest Dermatol ; 138(4): 844-853, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29138056

RESUMO

Conventional dendritic cells (cDCs) are composed of heterogeneous subsets commonly arising from dendritic cell (DC)-committed progenitors. A population of CD301b-expressing DCs has recently been identified in non-lymphoid barrier tissues such as skin. However, whether CD301b+ DCs in the skin represent an ontogenetically unique subpopulation of migratory cDCs has not been fully addressed. Here, we demonstrated that CD301b+ dermal DCs were distinct subpopulation of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent CD11b+ cDC2 lineage, which required an additional GM-CSF cue for the adequate development. Although the majority of lymphoid-resident cDC2 lacked CD301b expression, dermal migratory cDC2 contained a substantial fraction of CD301b+ subset. Similar to CD301b- population, CD301b+ dermal DC development was closely regulated by FLT3 signaling, suggesting their common origin from FLT3L-responsive cDC progenitors. However, FLT3L-driven cDC progenitor culture was not sufficient, but additional GM-CSF treatment was required to produce CD301b+ cDC2. In vivo development of CD301b+ cDC2 was significantly augmented by exogenous GM-CSF, while the repopulation of CD301b+ dermal cDC2 was abrogated by GM-CSF neutralization. Functionally, CD301b+ cDC2 was capable of producing a high level of IL-23, and the depletion of CD301b+ cDC2 effectively prevented IL-17-mediated psoriasiform dermatitis. Therefore, our findings highlight the differentiation program of a distinct CD301b+ dermal cDC2 subset in the skin and its involvement in psoriatic inflammation.


Assuntos
Células Dendríticas/imunologia , Derme/patologia , Imunidade Celular , Interleucina-17/metabolismo , Lectinas Tipo C/imunologia , Psoríase/imunologia , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Derme/imunologia , Derme/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais
20.
Exp Mol Med ; 49(8): e371, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28857086

RESUMO

Hematopoiesis involves a series of lineage differentiation programs initiated in hematopoietic stem cells (HSCs) found in bone marrow (BM). To ensure lifelong hematopoiesis, various molecular mechanisms are needed to maintain the HSC pool. CCCTC-binding factor (CTCF) is a DNA-binding, zinc-finger protein that regulates the expression of its target gene by organizing higher order chromatin structures. Currently, the role of CTCF in controlling HSC homeostasis is unknown. Using a tamoxifen-inducible CTCF conditional knockout mouse system, we aimed to determine whether CTCF regulates the homeostatic maintenance of HSCs. In adult mice, acute systemic CTCF ablation led to severe BM failure and the rapid shrinkage of multiple c-Kithi progenitor populations, including Sca-1+ HSCs. Similarly, hematopoietic system-confined CTCF depletion caused an acute loss of HSCs and highly increased mortality. Mixed BM chimeras reconstituted with supporting BM demonstrated that CTCF deficiency-mediated HSC depletion has both cell-extrinsic and cell-intrinsic effects. Although c-Kithi myeloid progenitor cell populations were severely reduced after ablating Ctcf, c-Kitint common lymphoid progenitors and their progenies were less affected by the lack of CTCF. Whole-transcriptome microarray and cell cycle analyses indicated that CTCF deficiency results in the enhanced expression of the cell cycle-promoting program, and that CTCF-depleted HSCs express higher levels of reactive oxygen species (ROS). Importantly, in vivo treatment with an antioxidant partially rescued c-Kithi cell populations and their quiescence. Altogether, our results suggest that CTCF is indispensable for maintaining adult HSC pools, likely by regulating ROS-dependent HSC quiescence.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Adulto , Animais , Biomarcadores/sangue , Transplante de Medula Óssea , Fator de Ligação a CCCTC/genética , Perfilação da Expressão Gênica , Hematopoese/genética , Humanos , Camundongos , Camundongos Knockout , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...