Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557080

RESUMO

Modern semiconductor fabrication is challenged by difficulties in overcoming physical and chemical constraints. A major challenge is the wet etching of dummy gate silicon, which involves the removal of materials inside confined spaces of a few nanometers. These chemical processes are significantly different in the nanoscale and bulk. Previously, electrical double-layer formation, bubble entrapment, poor wettability, and insoluble intermediate precipitation have been proposed. However, the exact suppression mechanisms remain unclear due to the lack of direct observation methods. Herein, we investigate limiting factors for the etching kinetics of silicon with tetramethylammonium hydroxide at the nanoscale by using liquid-phase transmission electron microscopy, three-dimensional electron tomography, and first-principles calculations. We reveal suppressed chemical reactions, unstripping phenomena, and stochastic etching behaviors that have never been observed on a macroscopic scale. We expect that solutions can be suggested from this comprehensive insight into the scale-dependent limiting factors of fabrication.

2.
J Phys Chem B ; 128(10): 2528-2536, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38422507

RESUMO

Evaluation of the insulating properties of polymers, such as the dielectric constant and dissipation factor, is crucial in electronic devices, including field-effect transistors and wireless communication applications. This study applies density functional theory (DFT) to predict the dielectric constant of soluble polyimides (SPIs). Various SPIs containing trifluoromethyl groups in the backbone with different pendant types, numbers, and symmetries are successfully synthesized, and their dielectric constants are evaluated and compared with the DFT-estimated values. Two types of DFT-optimized SPIs, single-chain and stacked-chain models, are used to describe the local geometries of the SPIs. In addition, to reveal the relationship between the molecular structure and dielectric constant, further investigations are conducted by considering the dielectric constant of composing ionic and electronic components. The DFT-estimated static dielectric constant of the single-chain model accurately reproduces the corresponding experimental value with at least 80% accuracy. Our approach provides a rational and accelerated strategy to evaluate polymer insulators for electronic devices based on cost-effective DFT calculations.

3.
Adv Sci (Weinh) ; 11(4): e2305383, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037253

RESUMO

Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+ , Zn2+, and Hg2+ ) acetate salts and didodecyldimethylammonium (DDA+ ) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m-2 , current efficiency of 65.48 cd A-1 , external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The "organic-inorganic" hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.

4.
ACS Appl Mater Interfaces ; 15(26): 31652-31663, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350067

RESUMO

Achieving high mobility and reliability in atomic layer deposition (ALD)-based IGZO thin-film transistors (TFTs) with an amorphous phase is vital for practical applications in relevant fields. Here, we suggest a method to effectively increase stability while maintaining high mobility by employing the selective application of nitrous oxide plasma reactant during plasma-enhanced ALD (PEALD) at 200 °C process temperature. The nitrogen-doping mechanism is highly dependent on the intrinsic carbon impurities or nature of each cation, as demonstrated by a combination of theoretical and experimental research. The Ga2O3 subgap states are especially dependent on plasma reactants. Based on these insights, we can obtain high-performance indium-rich PEALD-IGZO TFTs (threshold voltage: -0.47 V; field-effect mobility: 106.5 cm2/(V s); subthreshold swing: 113.5 mV/decade; hysteresis: 0.05 V). In addition, the device shows minimal threshold voltage shifts of +0.45 and -0.10 V under harsh positive/negative bias temperature stress environments (field stress: ±2 MV/cm; temperature stress: 95 °C) after 10000 s.

5.
J Phys Chem C Nanomater Interfaces ; 126(42): 17975-17982, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36330165

RESUMO

We probe the adsorption of molecular H2O on a TiO2 (110)-(1 × 1) surface decorated with isolated VO clusters using ultrahigh-vacuum scanning tunneling microscopy (UHV-STM) and temperature-programmed desorption (TPD). Our STM images show that preadsorbed VO clusters on the TiO2 (110)-(1 × 1) surface induce the adsorption of H2O molecules at room temperature (RT). The adsorbed H2O molecules form strings of beads of H2O dimers bound to the 5-fold coordinated Ti atom (5c-Ti) rows and are anchored by VO. This RT adsorption is completely reversible and is unique to the VO-decorated TiO2 surface. TPD spectra reveal two new desorption states for VO stabilized H2O at 395 and 445 K, which is in sharp contrast to the desorption of water due to recombination of hydroxyl groups at 490 K from clean TiO2(110)-(1 × 1) surfaces. Density functional theory (DFT) calculations show that the binding energy of molecular H2O to the VO clusters on the TiO2 (110)-(1 × 1) surface is higher than binding to the bare surface by 0.42 eV, and the resulting H2O-VO-TiO2 (110) complex provides the anchor point for adsorption of the string of beads of H2O dimers.

6.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36260974

RESUMO

We use CeOx-TiO2hetero-interfaces generated on the surface of CeOx-TiO2hybrid oxide supporting powders to stabilize Au single-atoms (SAs) with excellent low-temperature activity toward CO oxidation. Based on intriguing density functional theory calculation results on the preferential formation of Au-SAs at the CeOx-TiO2interfaces and the high activity of Au-SAs toward the Mars-van Krevelen type CO oxidation, we synthesized a Au/CeOx-TiO2(ACT) catalyst with 0.05 wt.% of Au content. The Au-SAs stabilized at the CeOx-TiO2interfaces by electronic coupling between Au and Ce showed improved low-temperature CO oxidation activity than the conventional Au/TiO2control group catalyst. However, the light-off profile of ACT showed that the early activated Au-SAs are not vigorously participating in CO oxidation. The large portion of the positive effect on the overall catalytic activity from the low activation energy barrier of ACT was retarded by the negative impact from the decreasing active site density at high temperatures. We anticipate that the low-temperature activity and high-temperature stability of Au-SAs that stand against each other can be optimized by controlling the electronic coupling strength between Au-SAs and oxide clusters at the Au-oxide-TiO2interfaces. Our results show that atomic-precision interface modulation could fine-tune the catalytic activity and stability of Au-SAs.

7.
ACS Appl Mater Interfaces ; 14(25): 28890-28899, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35714281

RESUMO

The CO2 atmospheric concentration level hit the record at more than 400 ppm and is predicted to keep increasing as the dependence on fossil fuels is inevitable. The CO2 electrocatalytic conversion becomes an alternative due to its environmental and energy-friendly properties and benign operation condition. Lately, bimetallic materials have drawn significant interest as electrocatalysts due to their distinct properties, which the parents' metal cannot mimic. Herein, the indium-bismuth nanosphere (In16Bi84 NS) was fabricated via the facile liquid-polyol technique. The In16Bi84 NS exhibits exceptional performance for CO2 reduction to formate, with the faradaic efficiency (FE) approaching ∼100% and a corresponding partial current density of 14.1 mA cm-2 at -0.94 V [vs the reversible hydrogen electrode (RHE)]. Furthermore, the FE could be maintained above 90% in a wide potential window (-0.84 to -1.54 V vs the RHE). This superior performance is attributed to the tuned electronic properties induced by the synergistic interaction between In and Bi, enabling the intermediates to be stably adsorbed on the catalyst surface to generate more formate ions.

8.
ACS Nano ; 16(5): 7848-7860, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35522525

RESUMO

Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 µmol mgcat-1 h-1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.

9.
J Phys Chem Lett ; 13(7): 1719-1725, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35156829

RESUMO

We propose an interface-engineered oxide-supported Pt nanoparticle-based catalyst with improved low-temperature activity toward CO oxidation. By wet-impregnating 1 wt % Ce on TiO2, we synthesized hybrid oxide support of CeOx-TiO2, in which dense CeOx clusters formed on the surface of TiO2. Then, the Pt/CeOx-TiO2 catalyst was synthesized by impregnating 2 wt % Pt on the CeOx-TiO2 supporting oxide. Pt-CeOx-TiO2 triphase interfaces were eventually formed upon impregnation of Pt on CeOx-TiO2. The Pt-CeOx-TiO2 interfaces open up the interface-mediated Mars-van Krevelen CO oxidation pathway, thus providing additional interfacial reaction sites for CO oxidation. Consequently, the specific reaction rate of Pt/CeOx-TiO2 for CO oxidation was increased by 3.2 times compared with that of Pt/TiO2 at 140 °C. Our results demonstrate a widely applicable and straightforward method of catalytic activation of the interfaces between metal nanoparticles and supporting oxides, which enabled fine-tuning of the catalytic performance of oxide-supported metal nanoparticle classes of heterogeneous catalysts.

10.
Sensors (Basel) ; 21(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34640953

RESUMO

Flexible capacitive humidity sensors are promising for low-cost, wearable, and radio frequency identification sensors, but their nonlinear response is an important issue for practical applications. Herein, the linearity of humidity response was controlled by surface water wettability and operating frequency of sensor, and the mechanism was explained in detail by surface water condensation. For a sensor with a Ag interdigitated electrode (IDE) on a poly(ethylene terephthalate) substrate, the capacitance showed a small linear increase with humidity up to 70% RH but a large nonlinear increase in the higher range. The response linearity was increased by a hydrophobic surface treatment of self-assembled monolayer coating while it was decreased by an ultraviolet/ozone irradiation for hydrophilicity. It was also increased by increasing the frequency in the range of 1-100 kHz, more prominently on a more hydrophilic surface. Based on experiment and simulation, the increase in sensor capacitance was greatly dependent on the geometric pattern (e.g., size, number, and contact angle) and electrical permittivity of surface water droplets. A larger and more nonlinear humidity response resulted from a larger increase in the number of droplets with a smaller contact angle on a sensor surface with higher water wettability and also from a higher permittivity of water at a lower frequency.


Assuntos
Água , Eletrodos , Umidade , Interações Hidrofóbicas e Hidrofílicas , Molhabilidade
11.
Nat Commun ; 12(1): 3081, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035270

RESUMO

The conventional solid-state reaction suffers from low diffusivity, high energy consumption, and uncontrolled morphology. These limitations are competed by the presence of water in solution route reaction. Herein, based on concept of combining above methods, we report a facile solid-state reaction conducted in water vapor at low temperature along with calcium doping for modifying lithium vanadate as anode material for lithium-ion batteries. The optimized material, delivers a superior specific capacity of 543.1, 477.1, and 337.2 mAh g-1 after 200 and 1000 cycles at current densities of 100, 1000 and 4000 mA g-1, respectively, which is attributed to the contribution of pseudocapacitance. In this work, we also use experimental and theoretical calculation to demonstrate that the enhancement of doped lithium vanadate is attributed to particles confinement of droplets in water vapor along with the surface and structure variation of calcium doping effect.

12.
Adv Sci (Weinh) ; 8(7): 2003697, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854895

RESUMO

The direct synthesis of inherently defect-free, large-area graphene on flexible substrates is a key technology for soft electronic devices. In the present work, in situ plasma-assisted thermal chemical vapor deposition is implemented in order to synthesize 4 in. diameter high-quality graphene directly on 10 nm thick Ti-buffered substrates at 100 °C. The in situ synthesized monolayer graphene displays outstanding stretching properties coupled with low sheet resistance. Further improved mechanical and electronic performances are achieved by the in situ multi-stacking of graphene. The four-layered graphene multi-stack is shown to display an ultralow resistance of ≈6 Ω sq-1, which is consistently maintained during the harsh repeat stretching tests and is assisted by self-p-doping under ambient conditions. Graphene-field effect transistors fabricated on polydimethylsiloxane substrates reveal an unprecedented hole mobility of ≈21 000 cm2 V-1 s-1 at a gate voltage of -4 V, irrespective of the channel length, which is consistently maintained during the repeat stretching test of 5000 cycles at 140% parallel strain.

13.
J Hazard Mater ; 401: 123283, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32652415

RESUMO

Metal pollutant adsorbents are an essential material platform for sustainable environmental remediation, but the adsorbents are typically disposable after sorption, which secondarily contaminates the environment. We report on recyclable Cu(II) adsorbent of deprotonated poly-N-phenylglycine nanofibers (d-PPG NFs)-grafted reduced graphene oxide (rGO) sheets intercalated with Fe3O4 nanoparticles (NPs), which are synthesized via wet chemical process. The adsorption performances of ternary Fe3O4 NPs@rGO-d-PPG NFs and binary Fe3O4 NPs@rGO composites are compared, and the ternary ones exhibit much higher Cu2+-adsorption capacity than binary ones under diverse pH conditions due to both high specific surface area and high cationic affinity of d-PPG NFs that follow the Freundlich adsorption model. Density-functional theory calculation results explain why/how the ternary composites show greater Cu2+ adsorption capability in higher pH environment. The ternary composites present stable, high Cu2+ adsorption capability, irrespective of Co2+ concentration in bimetallic Cu and Co aqueous solution. The Fe3O4 NPs in the ternary composites allow magnet-assisted collection after adsorption batches, whose collection yield is ∼95 % without adsorption capacity degradation in repeated adsorbent reuses over 10 times. This study provides a general, promising pathway to synthesize reusable sorptive materials for water purification/remediation.

14.
Nat Commun ; 11(1): 5649, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159056

RESUMO

Utilization of carbon dioxide (CO2) molecules leads to increased interest in the sustainable synthesis of methane (CH4) or methanol (CH3OH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, their selective initial surface reaction processes have been assumed without a fundamental understanding at the molecular level. Here, we report direct observations of spontaneous CO2 dissociation over the model rhodium (Rh) catalyst at 0.1 mbar CO2. The linear geometry of CO2 gas molecules turns into a chemically active bent-structure at the interface, which allows non-uniform charge transfers between chemisorbed CO2 and surface Rh atoms. By combining scanning tunneling microscopy, X-ray photoelectron spectroscopy at near-ambient pressure, and computational calculations, we reveal strong evidence for chemical bond cleavage of O‒CO* with ordered intermediates structure formation of (2 × 2)-CO on an atomically flat Rh(111) surface at room temperature.

15.
Proc Natl Acad Sci U S A ; 117(28): 16174-16180, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571947

RESUMO

Urban mining of precious metals from electronic waste, such as printed circuit boards (PCB), is not yet feasible because of the lengthy isolation process, health risks, and environmental impact. Although porous polymers are particularly effective toward the capture of metal contaminants, those with porphyrin linkers have not yet been considered for precious metal recovery, despite their potential. Here, we report a porous porphyrin polymer that captures precious metals quantitatively from PCB leachate even in the presence of 63 elements from the Periodic Table. The nanoporous polymer is synthesized in two steps from widely available monomers without the need for costly catalysts and can be scaled up without loss of activity. Through a reductive capture mechanism, gold is recovered with 10 times the theoretical limit, reaching a record 1.62 g/g. With 99% uptake taking place in the first 30 min, the metal adsorbed to the porous polymer can be desorbed rapidly and reused for repetitive batches. Density functional theory (DFT) calculations indicate that energetically favorable multinuclear-Au binding enhances adsorption as clusters, leading to rapid capture, while Pt capture remains predominantly at single porphyrin sites.

16.
ACS Appl Mater Interfaces ; 12(13): 15500-15506, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148031

RESUMO

In this study, we report a facile synthetic pathway to three-dimensional (3D) Pd nanosponge-shaped networks wrapped by graphene dots (Pd@G-NSs), which show superior electrocatalytic activity toward the hydrogen evolution reaction (HER) and exhibited excellent long-term stability in acidic media. Pd@G-NSs were synthesized by simply mixing Pd precursors, reducing agent, carbon dots (Cdots), and Br- ion at 30 °C. Experimental results and density functional theory (DFT) calculations suggested that the Br- ions played an essential role in accelerating the exfoliation of Cdot, supplying graphene layers, which could wrap the nanosponge-shaped Pd and finally form Pd@G-NS. In the absence of the Br- ions, only aggregated Pd nanoparticles (NPs) were formed and randomly mixed with Cdots. The resultant Pd@G-NS exhibited a high electrochemically active surface area and accelerated charge transport characteristics, leading to its superior electrocatalytic activity toward the HER in acidic media. The HER overpotential of Pd@G-NS was 32 mV at 10 mA cm-2, and the Tafel slope was 33 mV dec-1. Furthermore, the unique Pd@G-NS catalyst showed long-term stability for over 3000 cycles in acidic media as well, owing to the protection of Pd nanosponges by graphene dot wrapping. The overall HER performance of the Pd@G-NS catalyst exceeded that of commercial Pt/C.

17.
J Chem Phys ; 151(23): 234716, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864251

RESUMO

Platinum-based heterogeneous catalysts are mostly used in various commercial chemical processes because of their high catalytic activity, influenced by the metal/oxide interaction. To design rational catalysts with high performance, it is crucial to understand the relationship between the metal-oxide interface and the reaction pathway. Here, we investigate the role of oxygen defect sites in the reaction mechanism for CO oxidation using Pt nanoparticles supported on mesoporous TiO2 catalysts with oxygen defects. We show an intrinsic correlation between the catalytic reactivity and the local properties of titania with oxygen defects (i.e., Ti3+ sites). In situ infrared spectroscopy observations of the Pt/mesoporous TiO2-x catalyst indicate that an oxygen molecule bond can be activated at the perimeter between the Pt and an oxygen vacancy in TiO2 by neighboring CO molecules on the Pt surface before CO oxidation begins. The proposed reaction pathways for O2 activation at the Pt/TiO2-x interface based on density functional theory confirm our experimental findings. We suggest that this provides valuable insight into the intrinsic origin of the metal/support interaction influenced by the presence of oxygen vacancies, which clarifies the pivotal role played by the support.

18.
ACS Appl Mater Interfaces ; 11(51): 48300-48308, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769647

RESUMO

Solar-to-steam generation is a powerful, intense, and efficient method to harvest solar energy. Many efforts have been devoted to the development of a durable, affordable, and easy-to-manufacture solar steam device. In this study, we use a versatile polydimethylsiloxane material to fabricate an open porous black membrane with different pore structures using a simple salt water etching process and vapor deposition polymerization of pyrrole into a matrix. The porous black membrane absorbed radiation from a broad section of the light spectrum from near-infrared to ultraviolet and retained its initial pore structures and floating ability. We found that our black membrane with a tailored pore structure and surface exhibits excellent solar-to-steam generation efficiency of up to 72% at five sun irradiation. Also, a series of analyses including density functional theory calculation was used to prove the outstanding efficiency of solar-to-steam generation.

19.
Sci Rep ; 9(1): 16702, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723208

RESUMO

We study the mechanism of alkane reduction of SnO2 for efficient low-temperature recovery of Sn from SnO2. Based on thermodynamic simulation results, we comparatively analyze the reduction behavior and the efficiency of SnO2 reduction by H2 and alkanes (CxHy=2x+2, 0 ≤ x ≤ 4). We found that alkanes (n·CxHy) with the higher nx generally complete the reduction of SnO2 (T100) at the lower temperature. Moreover, the T100 of the SnO2 reduction by alkanes (n·CxHy) was decreased from the T100 of pure hydrogen with the same amount of hydrogen atoms (n·Hy). We found that the concentration of a gas phase product mixture, the amount of the produced solid carbon, and the T100 complementary vary as a function of the nx and ny, the total amount of carbon and hydrogen atoms in the reducing gas phase molecules. Our results demonstrate a viability of the low temperature reduction method of SnO2 by alkanes for efficient recovery of Sn from SnO2, which can be applied for Sn recovery from Sn containing industrial wastes or Sn ores with economic value added that is held by the co-produced H2.

20.
Nat Nanotechnol ; 14(3): 245-251, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778213

RESUMO

Highly active metal nanoparticles are desired to serve in high-temperature electrocatalysis, for example, in solid oxide electrochemical cells. Unfortunately, the low thermal stability of nanosized particles and the sophisticated interface requirement for electrode structures to support concurrent ionic and electronic transport make it hard to identify the exact catalytic role of nanoparticles embedded within complex electrode architectures. Here we present an accurate analysis of the reactivity of oxide electrodes boosted by metal nanoparticles, where all particles participate in the reaction. Monodisperse particles (Pt, Pd, Au and Co), 10 nm in size and stable at high temperature (more than 600 °C), are uniformly distributed onto mixed-conducting oxide electrodes as a model electrochemical cell via self-assembled nanopatterning. We identify how the metal catalysts activate hydrogen electrooxidation on the ceria-based electrode surface and quantify how rapidly the reaction rate increases with proper choice of metal. These results suggest an ideal electrode design for high-temperature electrochemical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...