Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
J Pineal Res ; 76(4): e12958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747060

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-ß2/interleukin-1ß in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.


Assuntos
Melatonina , NF-kappa B , Melatonina/farmacologia , Animais , NF-kappa B/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612741

RESUMO

Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions. While 2D cultures showed robust surface marker expressions, 3D cultures exhibited reduced levels of CD44, CD90.2, and CD105. Adipogenic differentiation in 3D organotypic ADSCs faced challenges, with decreased organoid size and limited activation of adipogenesis-related genes. Key adipocyte markers, such as lipoprotein lipase (LPL) and adipoQ, were undetectable in 3D-cultured ADSCs, unlike positive controls in 2D-cultured mesenchymal stem cells (MSCs). Surprisingly, 3D-cultured ADSCs underwent mesenchymal-epithelial transition (MET), evidenced by increased E-cadherin and EpCAM expression and decreased mesenchymal markers. This study highlights successful ADSC organoid formation, notable MSC phenotype changes in 3D culture, adipogenic differentiation challenges, and a distinctive shift toward an epithelial-like state. These findings offer insights into the potential applications of 3D-cultured ADSCs in regenerative medicine, emphasizing the need for further exploration of underlying molecular mechanisms.


Assuntos
Adiposidade , Sistemas Microfisiológicos , Animais , Camundongos , Obesidade , Organoides , Adipócitos
3.
Int J Stem Cells ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267367

RESUMO

Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.

4.
Somatosens Mot Res ; 41(1): 48-55, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36721377

RESUMO

PURPOSE AND METHOD: The purpose of this study was to determine the changes in the Blood Oxygen Level Dependent signal of Primary somatosensory area (S1) and Brodmann area 3 (BA3) per finger and phalanx in comparison to the activation voxel when 250 Hz vibratory stimulation with high sensitivity for the Pacinian corpuscle was given to the four fingers and three phalanges. RESULTS: The result of analyzing the activation voxel showed a significant difference for S1 per finger and phalanx, but for BA3, no significant difference was observed despite a similar trend to S1. In contrast, the activation intensity (BOLD) displayed a significant difference for S1 per finger and phalanx and for BA3, where the activation voxel had no significant variation. In addition, while the result of S1 did not indicate whether the index or the little fingers had the highest sensitivity based on the BOLD signal per finger, the result of BA3 marked the strongest BOLD signal for the little finger as a response to 250 Hz vibratory stimulation. The activation intensity per phalanx was the highest for the intermediate phalanx for S1 and BA3, which was in line with a previous study comparing the activation voxel. CONCLUSIONS: The method based on the intensity of the nerve activation is presumed to have high sensitivity as the signal intensity is monitored within a specific, defined area. Thus, for the extraction of brain activation patterns of micro-domains, such as BA3, monitoring the BOLD signal that reflects the nerve activation intensity more sensitively is likely to be advantageous.


Assuntos
Imageamento por Ressonância Magnética , Córtex Somatossensorial , Córtex Somatossensorial/fisiologia , Imageamento por Ressonância Magnética/métodos , Dedos/inervação , Mapeamento Encefálico/métodos
5.
Nutrients ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068826

RESUMO

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Doenças Ósseas Metabólicas/metabolismo , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular , Osteogênese
6.
Allergy ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037751

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a complex condition characterized by impaired epithelial barriers and dysregulated immune cells. In this study, we demonstrated Forsythia velutina Nakai extract (FVE) simultaneously inhibits basophils, macrophages, keratinocytes, and T cells that are closely interrelated in AD development. METHODS: We analyzed the effect of FVE on nitric oxide and reactive oxygen species (ROS) production in macrophages, basophil degranulation, T cell activation, and tight junctions in damaged keratinocytes. Expression of cell-type-specific inflammatory mediators was analyzed, and the underlying signaling pathways for anti-inflammatory effects of FVE were investigated. The anti-inflammatory effects of FVE were validated using a DNCB-induced mouse model of AD. Anti-inflammatory activity of compounds isolated from FVE was validated in each immune cell type. RESULTS: FVE downregulated the expression of inflammatory mediators and ROS production in macrophages through TLR4 and NRF2 pathways modulation. It significantly reduced basophil degranulation and expression of type 2 (T2) and pro-inflammatory cytokines by perturbing FcεRI signaling. Forsythia velutina Nakai extract also robustly inhibited the expression of T2 cytokines in activated T cells. Furthermore, FVE upregulated the expression of tight junction molecules in damaged keratinocytes and downregulated leukocyte attractants, as well as IL-33, an inducer of T2 inflammation. In the AD mouse model, FVE showed superior improvement in inflammatory cell infiltration and skin structure integrity compared to dexamethasone. Dimatairesinol, a lignan dimer, was identified as the most potent anti-inflammatory FVE compound. CONCLUSION: Forsythia velutina Nakai extract and its constituent compounds demonstrate promising efficacy as a therapeutic option for prolonged AD treatment by independently inhibiting various cell types associated with AD and disrupting the deleterious link between them.

7.
Cell Death Differ ; 30(10): 2309-2321, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704840

RESUMO

Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.

8.
Front Bioeng Biotechnol ; 11: 1244569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744261

RESUMO

Background: In-stent restenosis caused by tissue hyperplasia and tumor growth through the wire meshes of an implanted self-expandable metallic stent (SEMS) remains an unresolved obstacle. This study aimed to investigate the safety and efficacy of SEMS-mediated radiofrequency ablation (RFA) for treating stent-induced tissue hyperplasia in a rat gastric outlet obstruction model. Methods: The ablation zone was investigated using extracted porcine liver according to the ablation time. The optimal RFA parameters were evaluated in the dissected rat gastric outlet. We allocated 40 male rats to four groups of 10 rats as follows: group A, SEMS placement only; group B, SEMS-mediated RFA at 4 weeks; group C, SEMS-mediated RFA at 4 weeks and housed until 8 weeks; and group D, SEMS-mediated RFA at 4 and 8 weeks. Endoscopy and fluoroscopy for in vivo imaging and histological and immunohistochemical analysis were performed to compare experimental groups. Results: Stent placement and SEMS-mediated RFA with an optimized RFA parameter were technically successful in all groups. Granulation tissue formation-related variables were significantly higher in group A than in groups B-D (all p < 0.05). Endoscopic and histological findings confirmed that the degrees of stent-induced tissue hyperplasia in group D were significantly lower than in groups B and C (all p < 0.05). Hsp70 and TUNEL expressions were significantly higher in groups B-D than in group A (all p < 0.001). Conclusion: The implanted SEMS-mediated RFA successfully managed stent-induced tissue hyperplasia, and repeated or periodic RFA seems to be more effective in treating in-stent restenosis in a rat gastric outlet obstruction model.

9.
Am J Cancer Res ; 13(7): 3221-3233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559990

RESUMO

Colorectal cancer (CRC) is a prevalent cancer worldwide, ranking as the third most common cancer and the second leading cause of cancer-related deaths. The presence or absence of lymph node metastases is one of the representative markers for predicting CRC prognosis, but often yields heterogeneous results. In this study, we conducted an integrative molecular analysis of CRC using publicly available data from The Cancer Genome Atlas database and NCBI's Gene Expression Omnibus. Through our analysis, we identified 372 upregulated genes that were differentially expressed in CRC patients. Additionally, Kyoto Encyclopedia of Genes and Genomes analysis revealed five significant pathways, including Hippo, FC-gamma, and forkhead box O signaling pathways, which are known to be associated with cancer. Survival analysis of 28 genes involved in these pathways led to the identification of 13 genes with prognostic significance (P < 0.05). To validate our findings, logistic regression models were generated and tested in multiple cohorts, demonstrating significant accuracy. Moreover, we identified six genes (BNIP3, CD63, RDX, RGCC, WASF1, and WASF3) whose combination predicted the best prognosis based on survival analysis. This predictive model holds promise as a potential biomarker for prognosis, survival, and treatment efficacy. In conclusion, our study provides valuable insights into the molecular characteristics of CRC and identifies prognostic biomarkers. The combination of differentially expressed genes and their involvement in cancer-related pathways enhances our understanding of CRC pathogenesis and opens avenues for personalized treatment approaches and improved patient outcomes.

11.
ACS Appl Mater Interfaces ; 15(29): 34475-34487, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37452740

RESUMO

The application of irreversible electroporation (IRE) to endoluminal organs is being investigated; however, the current preclinical evidence and optimized electrodes are insufficient for clinical translation. Here, a novel self-expandable electrode (SE) made of chemically polished nickel-titanium (Ni-Ti) alloy wire for endoluminal IRE is developed in this study. Chemically polished heat-treated Ni-Ti alloy wires demonstrate increased electrical conductivity, reduced carbon and oxygen levels, and good mechanical and self-expanding properties. Bipolar IRE using chemically polished Ni-Ti wires successfully induces cancer cell death. IRE-treated potato tissue shows irreversibly and reversibly electroporated areas containing dead cells in an electrical strength-dependent manner. In vivo study using an optimized electric field strength demonstrates that endobiliary IRE using the SE evenly induces well-distributed mucosal injuries in the common bile duct (CBD) with the overexpression of the TUNEL, HSP70, and inflammatory cells without ductal perforation or stricture formation. This study demonstrates the basic concept of the endobiliary IRE procedure, which is technically feasible and safe in a porcine CBD as a novel therapeutic strategy for malignant biliary obstruction. The SE is a promising electrical energy delivery platform for effectively treating endoluminal organs.


Assuntos
Neoplasias , Titânio , Suínos , Animais , Titânio/química , Níquel/química , Eletroporação/métodos , Eletrodos , Ligas
12.
Neuroreport ; 34(10): 501-505, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37270841

RESUMO

OBJECTIVES: Binaural beats are auditory beat stimulation that produces sounds and induces a specific state of brain wave based on the difference in the frequency of stimulation. This study aimed to investigate the effects of inaudible binaural beats on visuospatial memory at 18 000 Hz reference and 10 Hz difference frequencies. METHODS: Eighteen adult subjects in their twenties were enrolled, including 12 males (mean age: 23.8 ±â€…1.2) and 6 females (mean age: 22.8 ±â€…0.8). An auditory stimulator providing 10 Hz binaural beats stimulation via 18 000 Hz to the left and 18 010 Hz to the right ears was used. The experiment consisted of two 5-min phases, including a rest phase and a task phase involving task performance without (Task-only) and with binaural beats stimulation (Task+BB). A 3-back task was used to measure visuospatial memory. Cognitive ability measured by task performance (accuracy and reaction time) with and without binaural beats, as well as variations in alpha power across different brain domains, were compared using paired t-tests. RESULTS: Compared to the Task-only condition, the Task+BB condition had significantly higher accuracy and significantly shorter reaction time. The electroencephalogram analysis showed that the reduction level in alpha power for the task performance under the Task+BB condition was significantly lower in all brain areas except the frontal, compared to that under the Task-only condition. CONCLUSION: The significance of this study lies in having verified the independent effects of binaural beats stimulation without any auditory influence, based on visuospatial memory.


Assuntos
Ondas Encefálicas , Eletroencefalografia , Adulto , Masculino , Feminino , Humanos , Adulto Jovem , Estimulação Acústica , Encéfalo/fisiologia , Tempo de Reação/fisiologia
13.
Food Chem Toxicol ; 178: 113890, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37308052

RESUMO

Evaluating tissue injury largely depends on serum biochemical analysis despite insufficient tissue specificity and low sensitivity. Therefore, attention has been paid to the potential of microRNAs (miRNAs) to overcome the limitations of the current diagnostic tools, as tissue-enriched miRNAs are detected in the blood upon tissue injury. First, using a cisplatin-injected rats, we screened a specific pattern of altered hepatic miRNAs and their target mRNAs. Subsequently, we identified novel liver-specific circulating miRNAs for drug-induced liver injury by comparing miRNA expression changes in organs and serum. RNA sequencing revealed that 32 hepatic miRNAs were differentially expressed (DE) in the cisplatin-treated group. Furthermore, among the 1217 targets predicted using miRDB on these DE-miRNAs, 153 hepatic genes involved in different liver function-related pathways and processes were found to be dysregulated by cisplatin. Next, comparative analyses of the liver, kidneys, and serum DE-miRNAs were conducted to select circulating miRNA biomarker candidates reflecting drug-induced liver injury. Finally, among the four liver-specific circulating miRNAs selected based on their expression patterns in tissue and serum, miR-532-3p was increased in the serum after cisplatin or acetaminophen administration. Our findings suggest that miR-532-3p is potential as a serum biomarker for identifying drug-induced liver injury, leading to the accurate diagnosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNA Circulante , MicroRNAs , Ratos , Animais , Acetaminofen/toxicidade , Cisplatino/toxicidade , MicroRNAs/genética , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/genética
14.
Behav Sci (Basel) ; 13(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37232587

RESUMO

The purpose of this study is to analyze the cognitive characteristics that can be induced by vibration stimuli at two intensities, three frequencies, and five presentation periods. The experiment was conducted on 20 right-handed adult males, and a subjective evaluation was performed using a questionnaire. Regression analysis was performed to observe the parameters affecting cognitive characteristics according to changes in intensity, frequency, and stimulation duration. The regression analysis results showed that the cognitive characteristics affected by changes in intensity, frequency, and stimulation duration were "heavy", "bold", "thick", and "light". The cognitive characteristics affected by two-variable combinations were "deep", "clear", "vibrating", "dense", "numb", "blunt", "shallow", "fuzzy", and "soft". Cognitive characteristics affected by either intensity, frequency, or stimulation duration were "fast", "pungent", "skinny", "thin", "slow", "ticklish", "tingling", "prickling", "tap", and "rugged". By observing the cognitive characteristics that can be induced by the combination of intensity, frequency, and stimulation duration, we confirmed that in addition to intensity and frequency, the stimulation duration is an important factor that influences the induction of various cognitive characteristics. The results presented in the study can be used to enhance the utility of haptic surfaces for extended reality applications.

15.
ACS Appl Mater Interfaces ; 15(22): 26373-26384, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219569

RESUMO

Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Esferoides Celulares , Camundongos , Animais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Engenharia Tecidual/métodos , Dexametasona/farmacologia , Dexametasona/metabolismo
16.
Am J Cancer Res ; 13(4): 1443-1456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168328

RESUMO

N6-methyladenosine (m6A) modification in RNA affects various aspects of RNA metabolism and regulates gene expression. This modification is modulated by many regulatory proteins, such as m6A methyltransferases (writers), m6A demethylases (erasers), and m6A-binding proteins (readers). Previous studies have suggested that alterations in m6A regulatory proteins induce genome-wide alternative splicing in many cancer cells. However, the functional effects and molecular mechanisms of m6A-mediated alternative splicing have not been fully elucidated. To understand the consequences of this modification on RNA splicing in cancer cells, we performed RNA sequencing and analyzed alternative splicing patterns in METTL3-knockdown osteosarcoma U2OS cells. We detected 1,803 alternatively spliced genes in METTL3-knockdown cells compared to the controls and found that cell cycle-related genes were enriched in differentially spliced genes. A comparison of the published MeRIP-seq data for METTL14 with our RNA sequencing data revealed that 70-87% of alternatively spliced genes had an m6A peak near 1 kb of alternative splicing sites. Among the 19 RNA-binding proteins enriched in alternative splicing sites, as revealed by motif analysis, expression of SFPQ highly correlated with METTL3 expression in 12,839 TCGA pan-cancer patients. We also found that cell cycle-related genes were enriched in alternatively spliced genes of other cell lines with METTL3 knockdown. Taken together, we suggest that METTL3 regulates m6A-dependent alternative splicing, especially in cell cycle-related genes, by regulating the functions of splicing factors such as SFPQ.

17.
Aging (Albany NY) ; 15(7): 2418-2432, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37036468

RESUMO

The mechanism underlying xerostomia after menopause has not yet been fully elucidated. This study aimed to investigate the mechanism of xerostomia and the effect of the ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (FER) on salivary gland dysfunction in a postmenopausal animal model. Twenty-four female Sprague-Dawley rats were randomly divided into four groups: a SHAM group (n = 6, sham-operated rats), an OVX group (n = 6, ovariectomized rats), an FER group (n = 6, ovariectomized rats injected intraperitoneally with FER), and a DFO group (n = 6, ovariectomized rats injected intraperitoneally with DFO). GPX4 activity, iron accumulation, lipid peroxidation, inflammation, fibrosis, and salivary gland function were analyzed. Recovery of GPX4 activity and a decrease in iron accumulation and cytosolic MDA + HAE were observed in the DFO group. In addition, collagen I, collagen III, TGF-ß, IL-6, TNF-α, and TGF-ß levels were decreased in the DFO group compared to the OVX group. Recovery of GPX4 activity and the morphology of mitochondria, and reduction of cytosolic MDA + HAE were also observed in the FER group. In addition, decreased expression of inflammatory cytokines and fibrosis markers and increased expression of AQP5 were observed in both the DFO and FER groups. Postmenopausal salivary gland dysfunction is associated with ferroptosis, and DFO and FER may reverse the postmenopausal salivary gland dysfunction after menopause. DFO and FER are hence considered promising treatments for postmenopausal xerostomia.


Assuntos
Desferroxamina , Xerostomia , Ratos , Feminino , Animais , Desferroxamina/farmacologia , Ratos Sprague-Dawley , Fibrose , Ferro , Glândulas Salivares , Fator de Crescimento Transformador beta
18.
Technol Health Care ; 31(S1): 3-8, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038776

RESUMO

BACKGROUND: Several studies have continuously investigated FFRs using binaural beat (BB) stimulations and their related effects. However, only a few studies have investigated the differences in BB stimulation effects according to basic demographic characteristics, such as gender and age. OBJECTIVE: This study aimed to determine the alpha wave activity after a 10-Hz BB stimulation and subsequently identify differences according to gender across all brain areas (frontal, central, parietal, temporal, and occipital areas). METHODS: A total of 23 healthy adults (11 male and 12 female), aged 20-29, participated in the study. For the 10-Hz BB stimulation, pure tone auditory stimuli of 250 and 260 Hz were given to the left and right ear, respectively. Through a power spectrum analysis of the phase-excluding BBs (non-BBs) and phase-including 10-Hz BBs (α-BBs), the alpha power at each brain area was estimated. These values were compared using a mixed-design ANOVA. RESULTS: With the exception of the temporal area, all other brain areas showed a significant increase in alpha power for α-BBs compared to those of non-BBs. However, the difference according to gender was not significant. CONCLUSION: The results indicated the lack of gender effects in alpha wave generation through a 10-Hz BB stimulation.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Adulto , Humanos , Masculino , Feminino , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Cabeça
20.
BMB Rep ; 56(1): 15-23, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379514

RESUMO

After birth, animals are colonized by a diverse community of microorganisms. The digestive tract is known to contain the largest number of microbiome in the body. With emergence of the gut-brain axis, the importance of gut microbiome and its metabolites in host health has been extensively studied in recent years. The establishment of organoid culture systems has contributed to studying intestinal pathophysiology by replacing current limited models. Owing to their architectural and functional complexity similar to a real organ, co-culture of intestinal organoids with gut microbiome can provide mechanistic insights into the detrimental role of pathobiont and the homeostatic function of commensal symbiont. Here organoid-based bacterial co-culture techniques for modeling host-microbe interactions are reviewed. This review also summarizes representative studies that explore impact of enteric microorganisms on intestinal organoids to provide a better understanding of host-microbe interaction in the context of homeostasis and disease. [BMB Reports 2023; 56(1): 15-23].


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Organoides , Bactérias , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...