Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730898

RESUMO

Modified asphalt binders are still considered important in asphalt pavement. However, the comprehensive use of various modifiers is limited due to storage stability issues. Moreover, there is a scarcity of detailed analyses regarding the degree of separation for asphalt binders among each method despite the utilization of various methods to assess the storage stability of binders. Therefore, a comprehensive analysis was conducted to assess the storage stability of asphalt binder modified with a crumb rubber modifier (CRM) and styrene-isoprene-styrene (SIS), utilizing five evaluation factors following the ASTM D7173 guidelines based on four mixing methods (A: high-shear mixing method, B: low-speed agitating method, C: high-shear mixing method + low mixing method, D: low-speed agitating method + low mixing method). To produce the modified asphalt binder, the proportions of the CRM were 5% and 10% for each binder, and 10% SIS was added to all binders. The results in this study convey that (1) the addition of the modifier led to an increase in G*/sin δ with different mixing methods, but using mixing methods (C and D) for a relatively long time resulted in a lower G*/sin δ, indicating suboptimal performance; (2) through the multiple stress creep recovery (MSCR), rheological properties of Jnr and % rec exhibited trends similar to G*/sin δ evaluation, highlighting an improved elastic recovery with a higher modifier content; (3) storage stability assessment revealed consistent trends in high-shear mixing groups (A and C), while low-speed mixing groups (B and D) exhibited an elevated separation index (SI), suggesting a sensitivity to modification conditions; (4) evaluation using the MSCR method indicated that % rec with a 3.2 kPa load is effective for the sensitive assessment of binder storage stability and Jnr showed a limited sensitivity across varying loads, advocating for % rec for precise evaluation; and (5) despite permitting various tests, achieving consistent results remains challenging. Future research should explore diverse modifiers and optimal evaluation methods to enhance knowledge of binder behavior and separation dynamics.

2.
Materials (Basel) ; 15(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683038

RESUMO

This study investigates the effectiveness of processed oil in the modification of PG 64-22 and PG 76-22 by assessing their physical and rheological properties, and multiple comparison was conducted between the two binders. The base binders PG 64-22 and PG 76-22 were blended with processed oil at four different percentages of contents (3%, 6%, 9% and 12% by the weight of the binder) and compared with the control binder in each test. The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were performed on the modified binders by applying a rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). The comparisons and results presented in this study indicate that (1) the processed oil has a significant effect on the binders' viscosity, which changes with respect to the increment of processed oil content. The viscosity of both modified binders decreased with the addition of 3, 6, 9 and 12% processed oil; (2) the performed DSR test showed that the addition of processed oil had a negative effect on the rutting resistance for both binders, since in PG 64-22, G*/Sin δ values decreased by 55, 65, 75 and 83% with the addition of 3, 6, 9 and 12% processed oil, respectively, while a decrement of G*/Sin δ of 24, 45, 58 and 65% with the addition of 3, 6, 9 and 12% processed oil was observed in PG 76-22; meanwhile, the fatigue cracking performance was improved and was found to be effective, while G* Sin δ in PG76-22 decreased by 9, 30, 36, and 52% and in PG 64-22 by 27, 44, 53, and 67% with the addition of 3, 6, 9 and 12% processed oil; (3) the results from the BBR test indicate significant improvement in the thermal cracking properties of the binders. The addition of 3, 6, 9 and 12% processed oil resulted in a decrease in the stiffness of both the PG 64-22 and PG 76-22 binders, with a positive effect consequently being observed on the m-values of the binders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...