Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732859

RESUMO

Vehicular ad hoc networks (VANETs) use multiple channels to communicate using wireless access in vehicular environment (WAVE) standards to provide a variety of vehicle-related applications. The current IEEE 802.11p WAVE communication channel structure is composed of one control channel (CCH) and several service channels (SCHs). SCHs are used for non-safety data transmission, while the CCH is used for broadcasting beacons, control, and safety. WAVE devices transmit data that alternate between CCHs and SCHs, and each channel is active for a duration called the CCH interval (CCHI) and SCH interval (SCHI), respectively. Currently, both intervals are fixed at 50 ms. However, fixed-length intervals cannot effectively respond to dynamically changing traffic loads. Additionally, when many vehicles are simultaneously using the limited channel resources for data transmission, the network performance significantly degrades due to numerous packet collisions. Herein, we propose an adaptive resource allocation technique for efficient data transmission. The technique dynamically adjusts the SCHI and CCHI to improve network performance. Moreover, to reduce data collisions and optimize the network's backoff distribution, the proposed scheme applies reinforcement learning (RL) to provide an intelligent channel access algorithm. The simulation results demonstrate that the proposed scheme can ensure high throughputs and low transmission delays.

2.
Rev Sci Instrum ; 90(4): 045001, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043054

RESUMO

A high-resolution angle sensor which uses a double slit (DS) is proposed. By analyzing the positions of intensity peaks in the DS interference pattern, the incident angle of a collimated beam entering the DS is measured. The DS was designed to generate the multiple-order interference pattern with almost even modulation amplitude so that not only the central peak but also multiple side peaks could be used for the measurement. By averaging the incident angle values obtained from each peak position, the angle sensor achieved higher resolution and a smaller periodic nonlinearity error. The performance of the DS angle sensor was tested by comparison with a commercial autocollimator. The Allan deviation of the readout of the angle sensor was 0.0002 in. with the averaging time of 4 s, and the periodic nonlinearity error was evaluated to be less than 0.01 in.

3.
Mol Ther ; 27(6): 1087-1100, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962162

RESUMO

The major challenges of current mesenchymal stem cell (MSC)-based therapeutics are their low differentiation potential into specialized cell types and their homing ability to sites of injury. Therefore, many researchers have directed their efforts toward finding a novel stimulatory factor that can significantly enhance the therapeutic effects of MSCs. Colony-stimulating factor 2 (CSF-2) is previously known as a hematopoietic growth factor involved in the differentiation of various myeloid cells from hematopoietic progenitor cells. In addition to this canonical hematopoietic function, we identified for the first time that CSF-2 is actively secreted by stem cells, in response to various types of injuries, as an endogenous damage signal that promotes the therapeutic effects of MSCs by enhancing their multi-lineage differentiation and migratory capacities, possibly through its receptor CD116. Our results also revealed that CSF-2 exerts its stimulatory effects on MSCs via PI3K/Akt- and/or FAK/ERK1/2-signaling pathways. More importantly, we also found that MSCs stimulated with CSF-2 show markedly enhanced differentiation and migratory capacities and subsequent in vivo therapeutic effects in an endometrial ablation animal model. Collectively, our findings provide compelling evidence for a novel non-hematopoietic function of CSF-2 in promoting multiple beneficial functions of MSCs via a non-canonical mechanism as an endogenous damage signal.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Ablação Endometrial , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Sensors (Basel) ; 18(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366402

RESUMO

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.

5.
Rev Sci Instrum ; 89(4): 046105, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716378

RESUMO

This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

6.
Mol Ther ; 26(2): 606-617, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29066165

RESUMO

Stem cells introduced to site of injury primarily act via indirect paracrine effects rather than direct cell replacement of damaged cells. This gives rise to understanding the stem cell secretome. In this study, in vitro studies demonstrate that the secretome activates the PI3K/Akt or FAK/ERK1/2 signaling cascades and subsequently enhances the proliferative and migratory abilities of various types of skin cells, such as fibroblasts, keratinocytes, and vascular epithelial cells, ultimately accelerating wound contraction. Indeed, inhibition of these signaling pathways with synthetic inhibitors resulted in the disruption of secretome-induced beneficial effects on various skin cells. In addition, major components of the stem cell secretome (EGF, basic FGF, and HGF) may be responsible for the acceleration of wound contraction. Stimulatory effects of these three prominent factors on wound contraction are achieved through the upregulation of PI3K/Akt or FAK/ERK1/2 activity. Overall, we lay the rationale for using the stem cell secretome in promoting wound contraction. In vivo wound healing studies are warranted to test the significance of our in vitro findings.


Assuntos
Comunicação Parácrina , Proteoma , Células-Tronco/metabolismo , Cicatrização , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/patologia
7.
Rev Sci Instrum ; 88(5): 055108, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571473

RESUMO

An interferometric system is proposed for measuring the thickness of parallel glass plates by analyzing Haidinger fringes. Although a conventional Haidinger interferometer can measure thickness without 2π ambiguity using positions of peak and valley points in the interferogram, measurement accuracy is directly affected by the number of these points involved in the calculation. The proposed method obtains phase values over the entire interferogram by analyzing the quadrature Haidinger fringes generated by a current modulated laser diode. Therefore, it can achieve high speed measurement and nanometric resolution without mechanical rotation and thickness limitation of specimens. In the experiments, the standard deviation of repeated thickness measurement was evaluated as less than 0.3 nm, and the measured thickness profile of the proposed system agreed with that of a conventional thickness interferometer within ±15 nm. We also discussed the required accuracy of refractive index of specimens to implement the proposed method successfully and presented an exemplary measurement result of a multi-layer coated sample having a discontinuous thickness profile.

8.
Opt Express ; 24(26): A1580-A1585, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059321

RESUMO

An innovative flash LIDAR (light detection and ranging) system with high spatial resolution and high range precision is proposed in this paper. The proposed system consists of a polarization modulating Pockels cell (PMPC) and a micro-polarizer CCD camera (MCCD). The Pockels cell changes its polarization state with respect to time after a laser pulse is emitted from the system. The polarization state of the laser-return pulse depends on the arrival time. The MCCD measures the intensity of the returning laser pulse to calculate the polarization state, which gives the range. A spatial resolution and range precision of 0.12 mrad and 5.2 mm at 16 m were obtained, respectively, in this experiment.

9.
Opt Express ; 23(26): 32941-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831961

RESUMO

We propose and realize a modified spectral-domain interferometer to measure the physical thickness profile and group refractive index distribution of a large glass substrate simultaneously. The optical layout was modified based on a Mach-Zehnder type interferometer, which was specially adopted to be insensitive to mechanical vibration. According to the measurement results of repeated experiments at a length of 820 mm along the horizontal axis, the standard deviations of the physical thickness and group refractive index were calculated to be 0.173 µm and 3.4 × 10(-4), respectively. To verify the insensitivity to vibration, the physical thickness values were monitored at a stationary point while the glass panel was swung at an amplitude exceeding 20 mm. The uncertainty components were evaluated, and the combined measurement uncertainty became 161 nm (k = 1) for a glass panel with a nominal thickness of 0.7 mm.

10.
Opt Express ; 22(19): 23427-32, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321811

RESUMO

We developed an optical interferometric probe for measuring the geometrical thickness and refractive index of silicon wafers based on a Fizeau-type spectral-domain interferometer, as realized by adopting the optical fiber components of a circulator and a sheet-type beam splitter. The proposed method enables us to achieve a much simpler optical composition and higher immunity to air fluctuations owing to the use of fiber components and a common-path configuration as compared to a bulk-type optical configuration. A femtosecond pulse laser having a spectral bandwidth of 80 nm at a center wavelength of 1.55 µm and an optical spectrum analyzer having a wavelength uncertainty of 0.02 nm were used to acquire multiple interference signals in the frequency domain without a mechanical phase-shifting process. Among the many peaks in the Fourier-transformed signals of the measured interferograms, only three interference signals representing three different optical path differences were selected to extract both the geometrical thickness and group refractive index of a silicon wafer simultaneously. A single point on a double-sided polished silicon wafer was measured 90 times repetitively every two seconds. The geometrical thickness and group refractive index were found to be 476.89 µm and 3.6084, respectively. The measured thickness is in good agreement with that of a contact type method within the expanded uncertainty of contact-type instruments. Through an uncertainty evaluation of the proposed method, the expanded uncertainty of the geometrical thickness was estimated to be 0.12 µm (k = 2).


Assuntos
Algoritmos , Interferometria/instrumentação , Lasers , Fibras Ópticas , Refratometria/instrumentação , Silício/química , Desenho de Equipamento , Dispositivos Ópticos , Análise Espectral
11.
Appl Opt ; 53(20): 4604-10, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25090083

RESUMO

A thickness measurement system is proposed for in-line inspection of thickness variation of flat glass panels. Multi-reflection on the surfaces of glass panel generates an interference signal whose phase is proportional to the thickness of the glass panel. For accurate and stable calculation of the phase value, we obtain quadrature interference signals using a current modulation technique. The proposed system can measure a thickness profile with high speed and nanometric resolution, and obtain higher accuracy through real-time nonlinear error compensation. The thickness profile, measured by a transmissive-type experimental setup, coincided with a comparative result obtained using a contact-type thickness measurement system within the range of ±40 nm. The standard deviations of the measured thickness profiles and their waviness components were less than 3 nm with a scanning speed of 300 mm/s.

12.
Opt Express ; 22(6): 6486-94, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663997

RESUMO

A technique which can measure thickness variation of a moving glass plate in real-time with nanometric resolution is proposed. The technique is based on the double-slit interference of light. Owing to the nature of differential measurement scheme, the measurement system is immune to harsh environmental condition of a production line, and the measurement results are not affected by the swaying motion of the panel. With the preliminary experimental setup with scanning speed of 100 mm/s, the measurement repeatability was 3 nm for the waviness component of the thickness profile, filtered with a Gaussian filter with cutoff wavelength of 8 mm.

13.
Rev Sci Instrum ; 84(5): 056102, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742600

RESUMO

This Note presents a new absolute planar position measurement method using a two-dimensional phase-encoded binary grating and a sub-division process where nonlinearity error is compensated inherently. Two orthogonally accumulated intensity profiles of the image of the binary grating are analyzed separately to obtain the absolute position values in each axis. The nonlinearity error caused by the non-ideal sinusoidal signals in the intensity profile is compensated by modifying the configuration of the absolute position binary code and shift-averaging the intensity profile. Using an experimental setup, we measured a circular trajectory of 100 nm radius, and compared the measurement result with that of a laser interferometer. Applying the proposed compensation method, the nonlinearity error was reduced to less than 15 nm.

14.
Rev Sci Instrum ; 83(11): 115115, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206106

RESUMO

We present a new absolute position measurement method using a single track binary code where an absolute position code is encoded by changing the phase of one binary state representation. It can be decoded efficiently using structural property of the binary code, and its sub-division is possible by detecting the relative positions of the binary state representation used for the absolute position encoding. Therefore, the absolute position encoding does not interfere with the sub-division process and so any pseudo-random sequence can be used as the absolute position code. Because the proposed method does not require additional sensing part for the sub-division, it can be realized with a simple configuration and efficient data processing. To verify and evaluate the proposed method, an absolute position measurement system was setup using a binary code scale, a microscopic imaging system, and a CCD camera. In the comparison results with a laser interferometer, the measurement system shows the resolution of less than 50 nm and the nonlinearity error of less than ±60 nm after compensation.

15.
J Nanosci Nanotechnol ; 12(4): 3224-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849093

RESUMO

Optimizing the design of the surface texture is an essential aspect of Si solar cell technology as it can maximize the light trapping efficiency of the cells. The proper simulation tools can provide efficient means of designing and analyzing the effects of the texture patterns on light confinement in an active medium. In this work, a newly devised algorithm termed Slab-Outline, based on a ray tracing technique, is reported. The details of the intersection searching logic adopted in Slab-Outline algorithm are also discussed. The efficiency of the logic was tested by comparing the computing time between the current algorithm and the Constructive Solid Geometry algorithm, and its superiority in computing speed was proved. The validity of the new algorithm was verified by comparing the simulated reflectance spectra with the measured spectra from a textured Si surface.

16.
Opt Express ; 20(5): 5011-6, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418305

RESUMO

We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.


Assuntos
Interferometria/instrumentação , Lasers , Embalagem de Produtos/instrumentação , Refratometria/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos
17.
Rev Sci Instrum ; 82(11): 116108, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22129024

RESUMO

We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error.

18.
Rev Sci Instrum ; 82(8): 086111, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21895289

RESUMO

We present a high speed optical profiler (HSOP) using frequency-scanning lasers for three-dimensional profile measurements of microscopic structures. To improve upon previous techniques for implementing the HSOP, we developed frequency-scanning lasers and a compact microscopic interferometer. The controller of the HSOP was also modified to generate proper phase-shifting steps. For measurements of step height specimens, the HSOP showed results comparable with a commercial optical profiler, even with much higher measurement speeds (up to 30 Hz). The typical repeatability of step height measurement was less than 1 nm. We also present measurements of microscopic structures to verify the HSOP's ability to perform high speed inline inspection for the semiconductor and flat-panel display industries.

19.
Appl Opt ; 50(11): 1541-7, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21478926

RESUMO

High-speed two-wavelength phase-shifting interferometry is presented. The technique is aimed at high-speed in-line inspection of spacers in liquid crystal display panels or wafer bumps where the measuring range is well determined and high-speed measurements are essential. With our test setup, the measuring range is extended to 10 µm by using two injection locked frequency scanning lasers that offer fast and equidistant phase shifting of interference fringes. A technique to determine the unwrapped phase map in a frequency scanning phase-shifting interferometry without the ordinary phase-unwrapping process is proposed.

20.
Opt Express ; 18(23): 23517-22, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21164694

RESUMO

We propose and demonstrate a novel method to enhance the visibility of an optical interferometer when measuring low reflective materials. Because of scattering from a rough surface or its own low reflectivity, the visibility of the obtained interference signal is seriously deteriorated. By amplifying the weak light coming from the sample based on an injection-locking technique, the visibility can be enhanced. As a feasibility test, even with a sample having a reflectivity of 0.6%, we obtained almost the same visibility as a metal coated mirror. The suggested visibility enhanced interferometer can be widely used for measuring low reflective materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...