Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5462-5473, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266190

RESUMO

Most supramolecular systems were discovered by using a trial-and-error approach, leading to numerous synthetic efforts to obtain optimal supramolecular building blocks for selective guest encapsulation. Here, we report a simple coassembly strategy for preparing tamoxifen-selective supramolecular nanomaterials in an aqueous solution. The synthetic amphiphile molecule, 1,1,2,2-tetraphenylethylene (TPE), promotes large tamoxifen aggregate disassembly into smaller, discrete aggregates such as ribbon-like and micellar assemblies in coassembled solutions, enhancing the solubility and dispersion. The TPE moiety exhibits enhanced emission upon tamoxifen interaction, enabling the observation of the coassembled species in an aqueous solution for cell imaging. The tamoxifen-selective fluorescent micelles in the presence of a 1:1 molar ratio of TPE derivative with tamoxifen show enhanced tamoxifen absorption and anticancer effects against MCF-7 breast cancer cells. These supramolecular approaches, based on the coassembly of building blocks with molecular structural similarity, can provide a novel strategy for the efficient development of selective molecular carriers with enhanced biological activities.


Assuntos
Nanoestruturas , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Micelas , Células MCF-7
3.
Dalton Trans ; 53(1): 364, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38050410

RESUMO

Correction for 'Tubular metal organic frameworks from the curvature of 2D-honeycombed metal coordination' by Junhui Bao et al., Dalton Trans., 2020, 49, 2403-2406, https://doi.org/10.1039/C9DT04668B.

4.
ACS Appl Mater Interfaces ; 15(40): 47317-47326, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756705

RESUMO

The development of an ideal solution-processable transparent electrode has been a challenge in the field of all-solution-processed semitransparent organic solar cells (ST-OSCs). We present a novel poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) top electrode for all-solution-processed ST-OSCs through in situ doping of PEDOT:PSS. A strongly polarized long perfluoroalkyl (n = 8) chain-anchored sulfonic acid effectively eliminates insulating PSS and spontaneously crystallizes PEDOT at room temperature, leading to outstanding electrical properties and transparency of PEDOT top electrodes. Doped PEDOT-based ST-OSCs yield a high power conversion efficiency of 10.9% while providing an average visible transmittance of 26.0% in the visible range. Moreover, the strong infrared reflectivity of PEDOT enables ST-OSCs to reject 62.6% of the heat emitted by sunlight (76.7% from infrared radiation), outperforming the thermal insulation capability of commercial tint films. This light management approach using PEDOT enables ST-OSCs to simultaneously provide energy generation and energy savings, making it the first discovery toward sustainable energy in buildings.

5.
ACS Appl Mater Interfaces ; 15(25): 29767-29776, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337308

RESUMO

Variations in the functionalities of materials of different dimensions containing the same functional groups can be attributed to the structural stability and morphology of the materials. The morphology of peptide assemblies can influence their interactions with biological systems and ultimately modulate their bioactivity. Among reported Arg-Gly-Asp (RGD)-based supramolecular materials, two-dimensional (2-D) peptide assembly has been rarely studied. Herein, we report the fabrication of RGD-based supramolecular one-dimensional (1-D) and 2-D assemblies as peptide-based myoblast growth accelerators. The 2-D assembly was more effective in proliferating C2C12 cells than the 1-D assembly. These findings provide insights into the construction of optimal RGD-based supramolecular functional materials of different dimensions.


Assuntos
Oligopeptídeos , Peptídeos , Peptídeos/farmacologia , Peptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Proliferação de Células
6.
Nat Commun ; 14(1): 2503, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130853

RESUMO

Photosensitizers (PSs) with nano- or micro-sized pore provide a great promise in the conversion of light energy into chemical fuel due to the excellent promotion for transporting singlet oxygen (1O2) into active sites. Despite such hollow PSs can be achieved by introducing molecular-level PSs into porous skeleton, however, the catalytic efficiency is far away from imagination because of the problems with pore deformation and blocking. Here, very ordered porous PSs with excellent 1O2 generation are presented from cross-linking of hierarchical porous laminates originated by co-assembly of hydrogen donative PSs and functionalized acceptor. The catalytic performance strongly depends on the preformed porous architectures, which is regulated by special recognition of hydrogen binding. As the increasing of hydrogen acceptor quantities, 2D-organized PSs laminates gradually transform into uniformly perforated porous layers with highly dispersed molecular PSs. The premature termination by porous assembly endows superior activity as well as specific selectivity for the photo-oxidative degradation, which contributes to efficient purification in aryl-bromination without any postprocessing.

8.
Adv Healthc Mater ; 12(19): e2203136, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119536

RESUMO

Stimuli-responsive supramolecular materials have promising biological applications because of their ability to rapidly undergo significant structural changes in response to diverse stimuli. Herein, supramolecular sheets assembled via charge-transfer interactions between the pyrene moiety of a d-mannose-containing amphiphile and 7,7,8,8-tetracyanoquinodimethane (TCNQ) are reported. The supramolecular sheets show reduction-responsive behavior, in which their disassembly is triggered by the reduction of TCNQ by sodium sulfide. In an anaerobic environment, the sheet structure remains intact and the exposed d-mannose moieties induce the agglutination of facultative anaerobes, thereby inhibiting bacterial growth. In contrast, in an aerobic environment, the reduction of TCNQ by the hydrogen sulfide generated by facultative anaerobes causes sheet disassembly. This enables continuous bacterial growth, because the collapsed sheets cannot induce agglutination. Thus, this study presents a novel supramolecular material for the selective regulation of facultative anaerobe growth according to the external environment.


Assuntos
Aglutinação , Manose
9.
Adv Mater ; 35(31): e2302143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099626

RESUMO

Solar cells (PSCs) with quasi-2D Ruddlesden-Popper perovskites (RPP) exhibit greater environmental stability than 3D perovskites; however, the low power conversion efficiency (PCE) caused by anisotropic crystal orientations and defect sites in the bulk RPP materials limit future commercialization. Herein, a simple post-treatment is reported for the top surfaces of RPP thin films (RPP composition of PEA2 MA4 Pb5 I16 = 5) in which zwitterionic n-tert-butyl-α-phenylnitrone (PBN) is used as the passivation material. The PBN molecules passivate the surface and grain boundary defects in the RPP and simultaneously induce vertical direction crystal orientations of the RPPs, which lead to efficient charge transport in the RPP photoactive materials. With this surface engineering methodology, the optimized devices exhibit a remarkably enhanced PCE of 20.05% as compared with the devices without PBN (≈17.53%) and excellent long-term operational stability with 88% retention of the initial PCE under continuous 1-sun irradiation for over 1000 h. The proposed passivation strategy provides new insights into the development of efficient and stable RPP-based PSCs.

10.
Adv Sci (Weinh) ; 10(17): e2206802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097705

RESUMO

Herein, a new ternary strategy to fabricate efficient and photostable inverted organic photovoltaics (OPVs) is introduced by combining a bulk heterojunction (BHJ) blend and a fullerene self-assembled monolayer (C60 -SAM). Time-of-flight secondary-ion mass spectrometry - analysis reveals that the ternary blend is vertically phase separated with the C60 -SAM at the bottom and the BHJ on top. The average power conversion efficiency - of OPVs based on the ternary system is improved from 14.9% to 15.6% by C60 -SAM addition, mostly due to increased current density (Jsc ) and fill factor -. It is found that the C60 -SAM encourages the BHJ to make more face-on molecular orientation because grazing incidence wide-angle X-ray scattering - data show an increased face-on/edge-on orientation ratio in the ternary blend. Light-intensity dependent Jsc data and charge carrier lifetime analysis indicate suppressed bimolecular recombination and a longer charge carrier lifetime in the ternary system, resulting in the enhancement of OPV performance. Moreover, it is demonstrated that device photostability in the ternary blend is enhanced due to the vertically self-assembled C60 -SAM that successfully passivates the ZnO surface and protects BHJ layer from the UV-induced photocatalytic reactions of the ZnO. These results suggest a new perspective to improve both performance and photostability of OPVs using a facial ternary method.

11.
Angew Chem Int Ed Engl ; 62(18): e202300658, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36883199

RESUMO

Although two-dimensional (2D) chiral sheet structures are attractive because of their unique chemical and physical properties, single layer 2D chiral network structures with switchable pore interior remain elusive. Here we report spontaneous chirality induction in a single layer 2D network structure formed from the self-assembly of tetrapod azobenzene molecules. The chirality induction arises from multiple sublayers slipped in a preferred direction in which the sublayer consists of unidentical molecular arrangements in the in-plane a and b directions, breaking both the plane of symmetry and inversion symmetry. The protruded azobenzene units in the pore interior can be selectively isomerized upon UV irradiation, resulting in a reversible deformation of the chiral pores while maintaining the 2D frameworks. The chiral network can thus selectively entrap one enantiomer from a racemic solution with near perfect enantioselectivity, and then release it upon UV irradiation.

12.
J Am Chem Soc ; 145(3): 1793-1802, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625369

RESUMO

Supramolecular assembly based on aromatic interactions can provide well-defined nanostructures with an understanding of intermolecular interactions at the molecular level. The peptide assembly via a supramolecular approach can overcome the inherent limitations of bioactive peptides, such as proteolytic degradations and rapid internalizations into the cytosol. Although extensive research has been carried out on supramolecular peptide materials with a two-dimensional (2D) structure, more needs to be reported on biological activity studies using well-defined 2D peptide materials. Physical and chemical properties of the 2D peptide assembly attributed to their large surface area and flexibility can show low cytotoxicity, enhanced molecular loading, and higher bioconjugation efficiency in biological applications. Here, we report supramolecular 2D materials based on the pyrene-grafted amphiphilic peptide, which contains a peptide sequence (Asp-Gly-Glu-Ala; DGEA) that is reported to bind to the integrin α2ß1 receptor in 2D cell membranes. The addition of octafluoronaphthalene (OFN) to the pyrene-grafted peptide could induce a well-ordered 2D assembly by face-centered arene-perfluoroarene stacking. The DGEA-peptide 2D assembly with a flat structure, structural stability against enzymatic degradations, and a larger size can enhance the proliferation and differentiation of muscle cells via continuous interactions with cell membrane receptors integrin α2ß1 showing a low intracellular uptake (15%) compared to that (62%) of the vesicular peptide assembly. These supramolecular approaches via the arene-perfluoroarene interaction provide a strategy to fabricate well-defined 2D peptide materials with an understanding of assembly at the molecular level for the next-generation peptide materials.


Assuntos
Integrina alfa2beta1 , Peptídeos , Peptídeos/química , Mioblastos , Diferenciação Celular , Proliferação de Células
13.
Adv Sci (Weinh) ; 9(32): e2203663, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104225

RESUMO

Metal-air batteries as alternatives to the existing lithium-ion battery are becoming increasingly attractive sources of power due to their high energy-cost competitiveness and inherent safety; however, their low oxygen evolution and reduction reaction (OER/ORR) performance and poor operational stability must be overcome prior to commercialization. Herein, it is demonstrated that a novel class of hydrothermally grown dual-phase heterogeneous electrocatalysts, in which silver-manganese (AgMn) heterometal nanoparticles are anchored on top of 2D nanosheet-like nickel vanadium oxide (NiV2 O6 ), allows an enlarged surface area and efficient charge transfer/redistribution, resulting in a bifunctional OER/ORR superior to those of conventional Pt/C or RuO2 . The dual-phase NiV2 O6 /AgMn catalysts on the air cathode of a zinc-air battery lead to a stable discharge-charge voltage gap of 0.83 V at 50 mA cm-2 , with a specific capacity of 660 mAh g-1 and life cycle stabilities of more than 146 h at 10 mA cm-2 and 11 h at 50 mA cm-2 . The proposed new class of dual-phase NiV2 O6 /AgMn catalysts are successfully applied as pouch-type zinc-air batteries with long-term stability over 33.9 h at 10 mA cm-2 .

14.
J Am Chem Soc ; 144(38): 17341-17345, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36099520

RESUMO

The various proteins and asymmetric lipid bilayers present in cell membranes form curvatures, resulting in structural transformations to generate vesicles. Fission and fusion processes between vesicles and cell membranes are reversible in living organisms. Although the transformation of a two-dimensional membrane to a three-dimensional vesicle structure is a common natural phenomenon, the lack of a detailed understanding at the molecular level limits the development of synthetic systems for functional materials. Herein, we report a supramolecular membrane system through donor-acceptor interactions using a π-deficient acceptor and π-rich donor as building blocks. The reduced electrostatic repulsion between ammonium cations and the spontaneously deprotonated neutral amino group induced anisotropic membrane curvature, resulting in membrane fission to form vesicles with a detailed understanding at the molecular level. Furthermore, the reversible transformation of vesicles to membranes upon changing the pH provides a novel synthetic system exhibiting both fission and fusion processes.


Assuntos
Compostos de Amônio , Bicamadas Lipídicas , Compostos de Amônio/metabolismo , Cátions , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Proteínas/metabolismo
15.
Adv Mater ; 34(41): e2205268, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030364

RESUMO

Suppressing nonradiative recombination at the interface between the organometal halide perovskite (PVK) and the charge-transport layer (CTL) is crucial for improving the efficiency and stability of PVK-based solar cells (PSCs). Here, a new bathocuproine (BCP)-based nonconjugated polyelectrolyte (poly-BCP) is synthesized and this is introduced as a "dual-side passivation layer" between the tin oxide (SnO2 ) CTL and the PVK absorber. Poly-BCP significantly suppresses both bulk and interfacial nonradiative recombination by passivating oxygen-vacancy defects from the SnO2 side and simultaneously scavenges ionic defects from the other (PVK) side. Therefore, PSCs with poly-BCP exhibits a high power conversion efficiency (PCE) of 24.4% and a high open-circuit voltage of 1.21 V with a reduced voltage loss (PVK bandgap of 1.56 eV). The non-encapsulated PSCs also show excellent long-term stability by retaining 93% of the initial PCE after 700 h under continuous 1-sun irradiation in nitrogen atmosphere conditions.

16.
Adv Sci (Weinh) ; 9(23): e2201907, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35619287

RESUMO

Optical nanoantennas provide control of light at the nanoscale, which makes them important for diverse areas ranging from photocatalysis and flat metaoptics to sensors and biomolecular tweezing. They have traditionally been limited to metallic and dielectric nanostructures that sustain plasmonic and Mie resonances, respectively. More recently, nanostructures of organic J-aggregate excitonic materials have been proposed capable of also supporting nanooptical resonances, although their advance has been hampered from difficulty in nanostructuring. Here, the authors present the realization of organic J-aggregate excitonic nanostructures, using nanocylinder arrays as model system. Extinction spectra show that they can sustain both plasmon-like resonances and dielectric resonances, owing to the material providing negative and large positive permittivity regions at the different sides of its exciton resonance. Furthermore, it is found that the material is highly anisotropic, leading to hyperbolic and elliptic permittivity regions. Nearfield analysis using optical simulation reveals that the nanostructures therefore support hyperbolic localized surface exciton resonances and elliptic Mie resonances, neither of which has been previously demonstrated for this type of material. The anisotropic nanostructures form a new type of optical nanoantennas, which combined with the presented fabrication process opens up for applications such as fully organic excitonic metasurfaces.


Assuntos
Nanoestruturas , Ressonância de Plasmônio de Superfície , Anisotropia , Simulação por Computador , Nanoestruturas/química
17.
ACS Appl Mater Interfaces ; 14(14): 16100-16107, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377593

RESUMO

N-Acetylneuraminic acid (Neu5Ac), one of the abundant types of sialic acid, is an emerging anticancer agent owing to its ability to target selectins in the plasma membrane of cancer cells. Considering the functionality of Neu5Ac, obtaining novel Neu5Ac-conjugated materials with a selective and an enhanced antitumor activity has remained a challenge. Herein, we report the supramolecular materials of three novel amphiphiles composed of Neu5Ac as a hydrophilic segment and pyrene or adamantane as a hydrophobic segment. The synthetic amphiphiles 1, 2, and 3 self-assembled into ribbons, vesicles, and irregular aggregates in an aqueous solution, respectively. Among the materials, vesicles of amphiphile 2 showed the most substantial selectivity toward cancer cells, followed by cell death due to the production of reactive oxygen species by the pyrene group. The dual advantage of Neu5Ac-selectivity and the pyrene-cytotoxicity of vesicles of amphiphile 2 can provide a strategy for effective anticancer materials.


Assuntos
Ácido N-Acetilneuramínico , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ácido N-Acetilneuramínico/metabolismo
18.
Adv Mater ; 34(27): e2202574, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35474344

RESUMO

Semiconducting polymers with oligoethylene glycol (OEG) sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. In this work, new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene (T) and vinylene (V) thiophene-based donor units are synthesized and characterized for accumulation mode OECTs, where a long-alkyl-group (C12 ) attached to the DPP unit acts as a spacer distancing the OEG groups from the polymer backbone. gDPP-TTVTT shows the highest OECT transconductance (61.9 S cm-1 ) and high operational stability, compared to gDPP-TTT and their alkylated counterparts. Surprisingly, gDPP-TTVTT also shows high electronic charge mobility in a field-effect transistor, suggesting efficient ion injection/diffusion without hindering its efficient electronic charge transport. The elongated donor unit (TTVTT) facilitates hole polaron formation to be more localized to the donor unit, leading to faster and easier polaron formation with less impact on polymer structure during OECT operation, as opposed to the TTT unit. This is supported by molecular dynamics simulation. These simultaneously high electronic and ionic charge-transport properties are achieved due to the long-alkyl-group spacer in amphipathic sidechains, providing an important molecular design rule for glycolated copolymers.

19.
ACS Appl Mater Interfaces ; 14(9): 11211-11221, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225595

RESUMO

Emerging organic solar cells based on a ternary strategy is one of the most effective methods for improving the blend film morphology, absorption ability, and device performances. On the other hand, this strategy has had very limited success in all-polymer solar cells (all-PSCs) because of the scarcity of new polymers and the challenges faced during third component optimization. Herein, highly efficient ternary all-PSCs were developed from siloxane-functionalized side chains with a wide-band-gap (Eg) polymer, Si-BDT, which is blended with a medium and ultra-narrow Eg polymer donor and acceptor, PTB7-Th, and DCNBT-TPIC. An impressive power conversion efficiency (PCE) of 13.45% was achieved in the ternary all-PSCs [PTB7-Th(0.6):Si-BDT(0.4):DCNBT-TPIC(0.6)] with the addition of 0.4 wt equivalent Si-BDT into binary all-PSCs [PTB7-Th(1):DCNBT-TPIC(0.6) PCE of 10.11%]. In contrast, the binary all-PSCs with a Si-BDT(1):DCNBT-TPIC(0.6) active layer only exhibited a good PCE of 9.92%. More importantly, the siloxane-functionalized side chains increase the light-absorption ability, carrier mobility, blend miscibility, and film morphology in ternary devices compared to those of the binary devices. Hence, exciton dissociation, charge carrier transport, and suppressed recombination properties were facilitated. In the presence of Si-BDT, both binary and ternary all-PSCs PCEs are significantly improved. Indeed, 13.45% PCE is one of the best values reported for all-PSCs except for those based on polymerized small molecule acceptors. In addition, the ternary all-PSCs showed excellent environmental and thermal stabilities with 95 and 84% of the initial PCE retained after 900 and 500 h, respectively. These results offer effective device engineering, providing a new avenue for improving the device performance in ternary all-PSCs.

20.
Adv Sci (Weinh) ; 8(14): 2100332, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306977

RESUMO

The advent of special types of polymeric semiconductors, known as "polymer blends," presents new opportunities for the development of next-generation electronics based on these semiconductors' versatile functionalities in device applications. Although these polymer blends contain semiconducting polymers (SPs) mixed with a considerably high content of insulating polymers, few of these blends unexpectedly yield much higher charge carrier mobilities than those of pure SPs. However, the origin of such an enhancement has remained unclear owing to a lack of cases exhibiting definite improvements in charge carrier mobility, and the limited knowledge concerning the underlying mechanism thereof. In this study, the morphological changes and internal nanostructures of polymer blends based on various SP types with different intermolecular interactions in an insulating polystyrene matrix are investigated. Through this investigation, the physical confinement of donor-acceptor type SP chains in a continuous nanoscale network structure surrounded by polystyrenes is shown to induce structural ordering with more straight edge-on stacked SP chains. Hereby, high-performance and transparent organic field-effect transistors with a hole mobility of ≈5.4 cm2 V-1 s-1 and an average transmittance exceeding 72% in the visible range are achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...