Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(8): 3061-3073, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33585900

RESUMO

Cinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Propanóis/metabolismo , Transcinamato 4-Mono-Oxigenase , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
2.
New Phytol ; 225(1): 154-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408530

RESUMO

Plants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary metabolites that are synthesized through apparently independent biosynthetic pathways. Genetic evidence has revealed that the accumulation of glucosinolate intermediates limits phenylpropanoid production in a Mediator Subunit 5 (MED5)-dependent manner. To elucidate the molecular mechanism underlying this process, we analyzed the transcriptomes of a suite of Arabidopsis thaliana glucosinolate-deficient mutants using RNAseq and identified misregulated genes that are rescued by the disruption of MED5. The expression of a group of Kelch Domain F-Box genes (KFBs) that function in PAL degradation is affected in glucosinolate biosynthesis mutants and the disruption of these KFBs restores phenylpropanoid deficiency in the mutants. Our study suggests that glucosinolate/phenylpropanoid metabolic crosstalk involves the transcriptional regulation of KFB genes that initiate the degradation of the enzyme phenylalanine ammonia-lyase, which catalyzes the first step of the phenylpropanoid biosynthesis pathway. Nevertheless, KFB mutant plants remain partially sensitive to glucosinolate pathway mutations, suggesting that other mechanisms that link the two pathways also exist.


Assuntos
Arabidopsis/enzimologia , Glucosinolatos/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Propanóis/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mutação , Fenilalanina Amônia-Liase/genética , Proteólise
3.
Biotechnol Biofuels ; 12: 171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297159

RESUMO

BACKGROUND: Low-temperature swelling of cotton linter cellulose and subsequent gelatinization in trifluoroacetic acid (TFA) greatly enhance rates of enzymatic digestion or maleic acid-AlCl3 catalyzed conversion to hydroxymethylfurfural (HMF) and levulinic acid (LA). However, lignin inhibits low-temperature swelling of TFA-treated intact wood particles from hybrid poplar (Populus tremula × P. alba) and results in greatly reduced yields of glucose or catalytic conversion compared to lignin-free cellulose. Previous studies have established that wood particles from transgenic lines of hybrid poplar with high syringyl (S) lignin content give greater glucose yields following enzymatic digestion. RESULTS: Low-temperature (- 20 °C) treatment of S-lignin-rich poplar wood particles in TFA slightly increased yields of glucose from enzymatic digestions and HMF and LA from maleic acid-AlCl3 catalysis. Subsequent gelatinization at 55 °C resulted in over 80% digestion of cellulose in only 3 to 6 h with high-S-lignin wood, compared to 20-60% digestion in the wild-type poplar hybrid and transgenic lines high in guaiacyl lignin or 5-hydroxy-G lignin. Disassembly of lignin in woody particles by Ni/C catalytic systems improved yields of glucose by enzymatic digestion or catalytic conversion to HMF and LA. Although lignin was completely removed by Ni/C-catalyzed delignification (CDL) treatment, recalcitrance to enzymatic digestion of cellulose from the high-S lines was reduced compared to other lignin variants. However, cellulose still exhibited considerable recalcitrance to complete enzymatic digestion or catalytic conversion after complete delignification. Low-temperature swelling of the CDL-treated wood particles in TFA resulted in nearly complete enzymatic hydrolysis, regardless of original lignin composition. CONCLUSIONS: Genetic modification of lignin composition can enhance the portfolio of aromatic products obtained from lignocellulosic biomass while promoting disassembly into biofuel and bioproduct substrates. CDL enhances rates of enzymatic digestion and chemical conversion, but cellulose remains intrinsically recalcitrant. Cold TFA is sufficient to overcome this recalcitrance after CDL treatment. Our results inform a 'no carbon left behind' strategy to convert total woody biomass into lignin, cellulose, and hemicellulose value streams for the future biorefinery.

4.
New Phytol ; 223(1): 233-245, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30756399

RESUMO

The Mediator complex functions as a hub for transcriptional regulation. MED5, an Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A semidominant mutation (ref4-3) that causes a single amino acid substitution in MED5b functions as a strong suppressor of the pathway, leading to decreased soluble phenylpropanoid accumulation, reduced lignin content and dwarfism. By contrast, loss of MED5 results in increased concentrations of phenylpropanoids. We used a reverse genetic approach to identify suppressors of ref4-3 and found that ref4-3 requires CDK8, a kinase module subunit of Mediator, to repress plant growth. The genetic interaction between MED5 and CDK8 was further characterized using mRNA-sequencing (RNA-seq) and metabolite analysis. Growth inhibition and suppression of phenylpropanoid metabolism can be genetically separated in ref4-3 by elimination of CDK8 kinase activity; however, the stunted growth of ref4-3 is not dependent on the phosphorylation event introduced by the G383S mutation. In addition, rather than perturbation of lignin biosynthesis, misregulation of DJC66, a gene encoding a DNAJ protein, is involved in the dwarfism of the med5 mutants. Together, our study reveals genetic interactions between Mediator tail and kinase module subunits and enhances our understanding of dwarfing in phenylpropanoid pathway mutants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Quinase 8 Dependente de Ciclina/genética , Complexo Mediador/metabolismo , Mutação/genética , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fenótipo , Fosforilação , Propanóis/metabolismo , Transcrição Gênica
5.
Biotechnol Biofuels ; 10: 40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239412

RESUMO

BACKGROUND: Monolignol-like molecules can be integrated into lignin along with conventional monolignol units, and it has been shown that the incorporation of non-canonical subunits can be used to generate hydrolysable lignin by introduction of ester linkages into the polymer and that this type of lignin is more easily removable. Disinapoyl esters (DSEs), which to some degree resemble the monolignol sinapyl alcohol, may be promising lignin modifying units for this purpose. As a first step toward determining whether this goal is achievable, we manipulated metabolic flux in Arabidopsis to increase the amounts of DSEs by overexpressing sinapoylglucose:sinapoylglucose sinapoyltransferase (SST) which produces two main DSEs, 1,2-disinapoylglucose, and another compound we identify in this report as 3,4-disinapoyl-fructopyranose. RESULTS: We succeeded in overproducing DSEs by introducing an SST-overexpression construct into the sinapoylglucose accumulator1 (sng1-6) mutant (SST-OE sng1-6) which lacks several of the enzymes that would otherwise compete for the SST substrate, sinapoyglucose. Introduction of cinnamyl alcohol dehydrogenase-c (cad-c) and cad-d mutations into the SST-OE sng1-6 line further increased DSEs. Surprisingly, a reduced epidermal fluorescence (ref) phenotype was observed when SST-OE sng1-6 plants were evaluated under UV light, which appears to have been induced by the sequestration of DSEs into subvacuolar compartments. Although we successfully upregulated the accumulation of the target DSEs, we did not find any evidence showing the integration of DSEs into the cell wall. CONCLUSIONS: Our results suggest that although phenylpropanoid metabolic engineering is possible, a deeper understanding of sequestration and transport mechanisms will be necessary for successful lignin engineering through this route.

6.
Biotechnol Biofuels ; 9: 126, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330560

RESUMO

BACKGROUND: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content were grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. RESULTS: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G- or S-lignin. CONCLUSIONS: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.

8.
Plant Physiol ; 169(4): 2409-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26491147

RESUMO

The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals that 4CL1, 4CL2, and 4CL4 are more closely related to each other than to 4CL3, suggesting that the two groups may serve different biological functions. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, and 4CL3 has acquired a distinct role in flavonoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis, is greatly reduced in the 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. 4CL1 accounts for the majority of the total 4CL activity, and loss of 4CL1 leads to reduction in lignin content but no growth defect. The 4cl1 4cl2 and 4cl1 4cl2 4cl3 mutants are both dwarf but do not have further reduced lignin than the 4cl1 mutant, indicating that either 4CL1 or 4CL2 is required for normal plant growth. Although 4CL4 has a limited expression profile, it does make a modest contribution to lignin biosynthesis. Together, these data show that the four isoforms of 4CL in Arabidopsis have overlapping yet distinct roles in phenylpropanoid metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Coenzima A Ligases/metabolismo , Propanóis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas , Lignina/metabolismo , Redes e Vias Metabólicas , Mutação , Filogenia , Regiões Promotoras Genéticas/genética , Propanóis/química , Metabolismo Secundário
9.
Anal Chem ; 87(18): 9436-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26291845

RESUMO

Highly lignified vascular plant cell walls represent the majority of cellulosic biomass. Complete release of the biomass to deliver renewable energy by physical, chemical, and biological pretreatments is challenging due to the "protection" provided by polymerized lignin, and as such, additional tools to monitor lignin deposition and removal during plant growth and biomass deconstruction would be of great value. We developed a hyperspectral stimulated Raman scattering microscope with 9 cm(-1) spectral resolution and submicrometer spatial resolution. Using this platform, we mapped the aromatic ring of lignin, aldehyde, and alcohol groups in lignified plant cell walls. By multivariate curve resolution of the hyperspectral images, we uncovered a spatially distinct distribution of aldehyde and alcohol groups in the thickened secondary cell wall. These results collectively contribute to a deeper understanding of lignin chemical composition in the plant cell wall.


Assuntos
Arabidopsis/citologia , Parede Celular/metabolismo , Lignina/metabolismo , Microscopia/métodos , Análise Espectral Raman , Vibração , Álcoois/metabolismo , Aldeídos/metabolismo , Arabidopsis/genética , Lignina/química , Mutação , Oxirredução
10.
Nat Commun ; 6: 8041, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314500

RESUMO

YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Secas , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Estresse Oxidativo/genética , Oxirredutases/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Compostos de Sulfidrila/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/metabolismo , Mutação , Oxirredutases/metabolismo , Fenótipo
11.
Plant Cell ; 27(5): 1529-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25944103

RESUMO

Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Propanóis/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Lignina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Oximas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo
12.
Nature ; 509(7500): 376-80, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24670657

RESUMO

Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Lignina/metabolismo , Complexo Mediador/genética , Mutação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocombustíveis , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lignina/biossíntese , Lignina/química , Complexo Mediador/química , Complexo Mediador/deficiência , Complexo Mediador/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica/genética
13.
Plant Physiol ; 164(2): 584-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24381065

RESUMO

The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dexametasona/farmacologia , Mutação/genética , Epiderme Vegetal/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Propanóis/metabolismo , Ácido Salicílico/metabolismo , Metabolismo Secundário/genética , Solubilidade , Fatores de Tempo
14.
J Struct Biol ; 184(2): 103-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24075949

RESUMO

The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism.


Assuntos
Arabidopsis/ultraestrutura , Caules de Planta/ultraestrutura , Arabidopsis/metabolismo , Celulose/metabolismo , Celulose/ultraestrutura , Microanálise por Sonda Eletrônica , Microfibrilas/ultraestrutura , Minerais/metabolismo , Especificidade de Órgãos , Epiderme Vegetal/ultraestrutura , Difração de Raios X
15.
Plant J ; 76(3): 357-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23889038

RESUMO

Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.


Assuntos
Parede Celular/metabolismo , Lignina/metabolismo , Células Vegetais/metabolismo , Arabidopsis , Benzofuranos , Ácidos Cumáricos , Cumarínicos , Fluorescência , Fenilpropionatos/metabolismo , Pinus , Propionatos/metabolismo , Protoplastos/metabolismo , Plântula/metabolismo
16.
Mol Plant ; 6(2): 337-49, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22986790

RESUMO

Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with ~50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Fenótipo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Bases de Dados Genéticas , Expressão Gênica , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Solanum tuberosum/fisiologia , Estresse Fisiológico , Triptofano Transaminase/genética
17.
J Exp Bot ; 62(11): 3981-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21511905

RESUMO

The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Oxigenases de Função Mista/genética , Mutagênese Insercional , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
18.
Atten Percept Psychophys ; 72(6): 1533-55, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20675799

RESUMO

Previous research has shown that stimuli held in working memory (WM) can influence spatial attention. Using Navon stimuli, we explored whether and how items in WM affect the perception of visual targets at local and global levels in compound letters. Participants looked for a target letter presented at a local or global level while holding a regular block letter as a memory item. An effect of holding the target's identity in WM was found. When memory items and targets were the same, performance was better than in a neutral condition when the memory item did not appear in the hierarchical letter (a benefit from valid cuing). When the memory item matched the distractor in the hierarchical stimulus, performance was worse than in the neutral baseline (a cost on invalid trials). These effects were greatest when the WM cue matched the global level of the hierarchical stimulus, suggesting that WM biases attention to the global level of form. Interestingly, in a no-memory priming condition, target perception was faster in the invalid condition than in the neutral baseline, reversing the effect in the WM condition. A further control experiment ruled out the effects of WM being due to participants' refreshing their memory from the hierarchical stimulus display. The data show that information in WM biases the selection of hierarchical forms, whereas priming does not. Priming alters the perceptual processing of repeated stimuli without biasing attention.


Assuntos
Aprendizagem por Associação , Atenção , Sinais (Psicologia) , Área de Dependência-Independência , Memória de Curto Prazo , Orientação , Reconhecimento Visual de Modelos , Percepção de Tamanho , Adulto , Aprendizagem por Discriminação , Feminino , Humanos , Masculino , Tempo de Reação , Adulto Jovem
19.
Plant Physiol ; 145(3): 722-35, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17885085

RESUMO

Auxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Alelos , DNA Bacteriano/genética , DNA de Plantas/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Dominantes/genética , Família Multigênica , Mutagênese Insercional , Mutação/genética , Fenótipo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...