Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2402725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551094

RESUMO

Creating hierarchical molecular block heterostructures, with the control over size, shape, optical, and electronic properties of each nanostructured building block can help develop functional applications, such as information storage, nanowire spectrometry, and photonic computing. However, achieving precise control over the position of molecular assemblies, and the dynamics of excitons in each block, remains a challenge. In the present work, the first fabrication of molecular heterostructures with the control of exciton dynamics in each block, is demonstrated. Additionally, these heterostructures are printable and can be precisely positioned using Direct Ink Writing-based (DIW) 3D printing technique, resulting in programable patterns. Singlet excitons with emission lifetimes on nanosecond or microsecond timescales and triplet excitons with emission lifetimes on millisecond timescales appear simultaneously in different building blocks, with an efficient energy transfer process in the heterojunction. These organic materials also exhibit stimuli-responsive emission by changing the power or wavelength of the excitation laser. Potential applications of these organic heterostructures in integrated photonics, where the versatility of fluorescence, phosphorescence, efficient energy transfer, printability, and stimulus sensitivity co-exist in a single nanowire, are foreseen.

2.
Nano Lett ; 23(21): 9953-9962, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37871156

RESUMO

Information encryption strategies have become increasingly essential. Most of the fluorescent security patterns have been made with a lateral configuration of red, green, and blue subpixels, limiting the pixel density and security level. Here we report vertically stacked, luminescent heterojunction micropixels that construct high-resolution, multiplexed anticounterfeiting labels. This is enabled by meniscus-guided three-dimensional (3D) microprinting of red, green, and blue (RGB) dye-doped materials. High-precision vertical stacking of subpixel segments achieves full-color pixels without sacrificing lateral resolution, achieving a small pixel size of ∼µm and a high density of over 13,000 pixels per inch. Furthermore, a full-scale color synthesis for individual pixels is developed by modulating the lengths of the RGB subpixels. Taking advantage of these unique 3D structural designs, trichannel multiplexed anticounterfeiting Quick Response codes are successfully demonstrated. We expect that this work will advance data encryption technology while also providing a versatile manufacturing platform for diverse 3D display devices.

3.
Biosens Bioelectron ; 237: 115518, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442029

RESUMO

Viruses have unique coat proteins that are genetically modifiable. Their surface can serve as a nano-template on which electroactive molecules are immobilized. In this study, we report filamentous bacteriophage as a backbone to which redox mediators are covalently and densely tethered, constructing redox nanowire, i.e. an electron conducting biomaterial. The highly ordered coat proteins of a filamentous bacteriophage provide flexible and biocompatible platform to constitute a biohybrid redox nanowire. Incorporating bacteriophage and redox molecules form an entangled assembly of nanowires enabling facile electron transfer. Electron transfer among the molecular mediators in the entangled assembly originates apparent electron diffusion of which the electron transfer rate is comparable to that observed in conventional redox polymers. Programming peptide terminals suggests further enhancement in electron mediation by increasing redox species mobility. In addition, the redox nanowire film functions as a favorable matrix for enzyme encapsulation. The stability of the enzymes entrapped in this unique matrix is substantially improved.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Nanofios , Nanofios/química , Oxirredução , Transporte de Elétrons , Eletrodos
4.
Adv Mater ; 35(39): e2304094, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343137

RESUMO

Mixed-halide perovskites show tunable emission wavelength across the visible-light range, with optimum control of the light color. However, color stability remains limited due to the notorious halide segregation under illumination or an electric field. Here, a versatile path toward high-quality mixed-halide perovskites with high emission properties and resistance to halide segregation is presented. Through systematic in and ex situ characterizations, key features for this advancement are proposed: a slowed and controllable crystallization process can promote achievement of halide homogeneity, which in turn ensures thermodynamic stability; meanwhile, downsizing perovskite nanoparticle to nanometer-scale dimensions can enhance their resistance to external stimuli, strengthening the phase stability. Leveraging this strategy, devices are developed based on CsPbCl1.5 Br1.5 perovskite that achieves a champion external quantum efficiency (EQE) of 9.8% at 464 nm, making it one of the most efficient deep-blue mixed-halide perovskite light-emitting diodes (PeLEDs) to date. Particularly, the device demonstrates excellent spectral stability, maintaining a constant emission profile and position for over 60 min of continuous operation. The versatility of this approach with CsPbBr1.5 I1.5 PeLEDs is further showcased, achieving an impressive EQE of 12.7% at 576 nm.

5.
ACS Nano ; 17(14): 13584-13593, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37294876

RESUMO

Structural colors are produced by the diffraction of light from microstructures. The collective arrangement of substructures is a simple and cost-effective approach for structural coloration represented by colloidal self-assembly. Nanofabrication methods enable precise and flexible coloration by processing individual nanostructures, but these methods are expensive or complex. Direct integration of desired structural coloration remains difficult because of the limited resolution, material-specificity, or complexity. Here, we demonstrate three-dimensional printing of structural colors by direct writing of nanowire gratings using a femtoliter meniscus of polymer ink. This method combines a simple process, desired coloration, and direct integration at a low cost. Precise and flexible coloration is demonstrated by printing the desired structural colors and shapes. In addition, alignment-resolved selective reflection is shown for displayed image control and color synthesis. The direct integration facilitates structural coloration on various substrates, including quartz, silicon, platinum, gold, and flexible polymer films. We expect that our contribution can expand the utility of diffraction gratings across various disciplines such as surface-integrated strain sensors, transparent reflective displays, fiber-integrated spectrometers, anticounterfeiting, biological assays, and environmental sensors.

6.
ACS Nano ; 17(10): 9543-9551, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167417

RESUMO

Pervasive mechanical force in nature and human activities is closely related to intriguing physics and widespread applications. However, describing stress distribution timely and precisely in three dimensions to avoid "groping in the dark" is still a formidable challenge, especially for nonplanar structures. Herein, we realize three-dimensional (3D) stress imaging for sharp arbitrary targets via advanced 3D printing, owing to the use of fluoride nanocrystal(NC)-based ink. Notably, a fascinating mechano-luminescence (ML) is observed for the homogeneously dispersed NaLuF4:Tb3+ NCs (∼25 nm) with rationally designed deep traps (at 0.88 and 1.02 eV) via incorporating Cs+ ions and using X-ray irradiation. Carriers captured in the corresponding traps are steadily released under mechanical stimulations, which enables a ratio metric luminescence intensity based on the applied force. As a result, a significant mechano-optical conversion and superior optical waveguide of the corresponding transparent printed targets demonstrate stress in 3D with a high spatial and temporal resolution based on stereovision. These results highlight the optical function of the 3D-printed fluoride NCs, which cast light into the black boxes of stress described in space, benefiting us in understanding the ubiquitous force relevant to most natural and engineering processes.

7.
Adv Mater ; 35(35): e2301704, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37149779

RESUMO

Thermometry, the process of measuring temperature, is one of the most fundamental tasks not only for understanding the thermodynamics of basic physical, chemical, and biological processes but also for thermal management of microelectronics. However, it is a challenge to acquire microscale temperature fields in both space and time. Here, a 3D printed micro-thermoelectric device that enables direct 4D (3D Space + Time) thermometry at the microscale is reported. The device is composed of freestanding thermocouple probe networks, fabricated by bi-metal 3D printing with an outstanding spatial resolution of a few µm. It shows that the developed 4D thermometry can explore dynamics of Joule heating or evaporative cooling on microscale subjects of interest such as a microelectrode or a water meniscus. The utilization of 3D printing further opens up the possibility to freely realize a wide range of on-chip, freestanding microsensors or microelectronic devices without the design restrictions by manufacturing processes.

8.
Nanoscale ; 14(44): 16450-16457, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214195

RESUMO

Metallic nanoparticles that support localized surface plasmons have emerged as fundamental iconic building blocks for nanoscale photonics. Self-assembled clustering of plasmonic nanoparticles with controlled near-field interactions offers an interesting novel route to manipulate the electromagnetic fields at a subwavelength scale. Various bottom-up, self-assembly manners have been successfully devised to build plasmonic nanoparticle clusters displaying attractive optical properties. However, the incapability to configure on-demand architectures limits its practical reliability uses for scalable nanophotonic devices. Furthermore, a critical challenge has been addressing the accurate positioning of functional nanoparticles, including catalytic nanoparticles, dielectric nanoparticles, and quantum dots (QDs) in the clustered plasmonic hotspots. This work proposes a micropipette-based self-assembly method to fabricate three-dimensional architectures composed of colloidal clusters. The heterogeneous colloidal clusters comprising metallic nanoparticles and QDs are fabricated in one step by the micropipette-based self-assembly method. A plasmonic clustered pillar embedding QDs exhibited excellent photoluminescence characteristics compared to a collapsed pillar. The experimental and theoretical demonstration of the localized surface plasmon resonance and thermo-plasmonic properties of the colloidal clusters was performed.

9.
Adv Mater ; 34(45): e2204839, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099543

RESUMO

Photonic circuit systems based on optical waveguiding heteroarchitectures have attracted considerable interest owing to their potential to overcome the speed limitation in electronic circuits by modulating the optical signal at the micro- or nanoscale. However, controlling the parameters, including the wavelength and polarization of the light outcoupling, as well as the sequence among different building blocks, remains a key issue. Herein, supramolecular heteroarchitectures made by phosphorescent organometallic complexes of Pt, Pd, Cu, and Au are applied as photonic logic gates that show continuously variable emission colors from 475 to 810 nm, low waveguide losses down to 0.0077 dB µm-1 , and remarkable excitation-light polarization-dependent photoluminescence with anisotropy ratios up to 0.68. The sequences among Pt, Pd, Au, and Cu building blocks in the heteroarchitectures are controlled by living supramolecular polymerization or crystallization-driven self-assembly synthetic approaches. The results indicate the prospects for using organometallic complexes and supramolecular synthetic approaches to prepare photonic circuit systems with tunable emission color and controllable sequences among different blocks that achieve modulation of the optical signal in the visible-to-near-infrared spectral region.

10.
Nano Lett ; 22(19): 7776-7783, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173250

RESUMO

The functionalities of peptide microstructures and nanostructures can be enhanced by controlling their crystallinity. Gaining control over the crystallinity within the desired structure, however, remains a challenge. We have developed a three-dimensional (3D) printing method that enables spatioselective programming of the crystallinity of diphenylalanine (FF) dipeptide microarchitectures. A femtoliter ink meniscus is used to spatially control reprecipitation self-assembly, enabling the printing of a freestanding FF microstructure with programmed shape and crystallinity. The self-assembly crystallization of FF can be switched on and off at will by controlling the evaporation of the binary solvent. The evaporation-dependent crystallization was theoretically studied by the numerical simulation of supersaturation fields in the meniscus. We found that a 3D-printed FF microarchitecture with spatially programmed crystallinity can carry a 3D digital optical anisotropy pattern, applicable to generating polarization-encoded anticounterfeiting labels. This crystallinity-controlled additive manufacturing will pave the new way for facilitating the creation of peptide-based devices.


Assuntos
Dipeptídeos , Impressão Tridimensional , Dipeptídeos/química , Peptídeos , Solventes/química
11.
Sci Rep ; 12(1): 15576, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114274

RESUMO

The gearbox has the advantage of being able to change the torque and rotational speed according to the gear ratio and has high power transmission efficiency by transmitting power through the contact of the gear pair. When evaluating the strength and fatigue life of a gearbox using a design load or an equivalent load, there is a possibility that the results will be very different from the actual ones. Therefore, in this study, the load duration distribution (LDD) constructed based on the actual workload was used to evaluate the strength and fatigue life of the gearbox reliably. As a result of evaluating the strength and fatigue life of the gearbox using LDD, it was confirmed that the existing gearbox did not satisfy the target lifespan in the operating environment. Therefore, the reasons for these results were analyzed, and design modification was performed based on the analyzed results. As a result of design modification, shaft deflection decreased by rearrangement of the bearings, from an overhung type to a straddle type, thereby improving the fatigue life of gears and bearings. Finally, the load distribution acting on the gear tooth surface was improved through micro-geometry modification of the gears.


Assuntos
Fadiga , Zea mays , Torque
12.
Nano Lett ; 22(12): 4702-4711, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35622690

RESUMO

Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Pontos Quânticos/química
13.
ACS Cent Sci ; 8(1): 43-50, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35106371

RESUMO

Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen-lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.

14.
Anal Chem ; 94(4): 2063-2071, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029970

RESUMO

Photoelectrochemical (PEC) sensors are usually based on a single output signal, that is, the photocurrent change caused by the (photoelectro)chemical reaction between target analytes and photoelectrodes. However, the photocurrent may be influenced by redox species other than the target analyte; therefore, modifying the surface of photoelectrodes with probes that selectively bind to the analyte is essential. Moreover, even though various surface modification methods have been developed, distinguishing molecularly similar chemicals using PEC sensing systems remains a significant challenge. To address these selectivity issues, we proposed a photoanode-based PEC sensor that utilizes a cathodic transient current as a second output signal in addition to the photocurrent, which arises from the back reduction of photo-oxidized species. Factors influencing the back reduction were investigated by observing the transient photocurrent of hematite photoanodes in the presence of model redox probes. The chemical environment around the electrode-electrolyte interface was manipulated by altering the electrolyte composition or modifying the electrode surface. The favorable interaction between the electrode surface and redox species led to an increase in the extent of back reduction and the cathodic transient current. In addition, the extent of back reduction also depends on the chemical identity of the redox species, such as the kinetics of subsequent chemical reactions. Therefore, the synergistic combination of the photocurrent and the cathodic transient current enabled the differentiated detection of various catecholamine neurotransmitters with a single pristine photoelectrode, which has never been achieved using traditional PEC methods. Revisiting the transient photocurrent can complement conventional PEC applications and offers possibilities for more effective semiconductor-based applications.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Eletrodos , Oxirredução
15.
ACS Appl Mater Interfaces ; 14(5): 7184-7191, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084825

RESUMO

Metal-organic frameworks (MOFs) are a promising nanoporous functional material system; however, the practicality of shaping freeform MOF monoliths, while retaining their porosity, remains a challenge. Here, we demonstrate that meniscus-guided three-dimensional (3D) printing can produce pure MOF monoliths with high gas-uptake performance. The method exploits a femtoliter precursor ink meniscus to highly confine and guide supersaturation-driven crystallization in a layer-by-layer manner to print a pure HKUST-1 micro-monolith with a high spatial resolution of <3 µm. The proposed 3D printing technique does not involve rheological additives, binders, or mechanical forces. Thus, the resulting HKUST-1 monolith displays a prominently high Brunauer-Emmett-Teller surface area of 1192 m2/g, which is superior to monoliths produced using other 3D printing approaches. This technique enables both structural design freedom and high material performance in the manufacturing of MOFs for practical use.

16.
Adv Sci (Weinh) ; 9(5): e2103598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34939368

RESUMO

The quantum defects in nanodiamonds, such as nitrogen-vacancy (NV) centers, are emerging as a promising candidate for nanoscale sensing and imaging, and the controlled placement with respect to target locations is vital to their practical applications. Unfortunately, this prerequisite continues to suffer from coarse positioning accuracy, low throughput, and process complexity. Here, it is reported on direct, on-demand electrohydrodynamic printing of nanodiamonds containing NV centers with high precision control over quantity and position. After thorough characterizations of the printing conditions, it is shown that the number of printed nanodiamonds can be controlled at will, attaining the single-particle level precision. This printing approach, therefore, enables positioning NV center arrays with a controlled number directly on the universal substrate without any lithographic process. The approach is expected to pave the way toward new horizons not only for experimental quantum physics but also for the practical implementation of such quantum systems.

17.
ACS Appl Mater Interfaces ; 13(39): 46499-46506, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559532

RESUMO

Photoelectrochemical cells represent one of the promising ways to renewably produce hydrogen (H2) as a future chemical fuel. The design of a catalyst/semiconductor junction for the hydrogen evolution reaction (HER) requires various factors for high performance. In catalytic materials, an intrinsic activity with fast charge-transfer kinetics is important. Additionally, their thermodynamic property and physical adhesion should be compatible with the underlying semiconductor for favorable band alignment and stability during vigorous H2 bubble formation. Moreover, catalysts, especially non-noble materials that demand a large amount of loading, should be adequately dispersed on the semiconductor surface to allow sufficient light absorption to generate excitons. One of the methods to simultaneously satisfy these conditions is to adopt an interfacial layer between the semiconductor and active materials in HER. The interfacial layer efficiently extracts the electrons from the semiconductor and conveys those to the catalytically active surface. We demonstrate Ag as a 3D interfacial nanostructure of patterned MoSx catalysts for photoelectrochemical HER. The nanostructured porous Ag layer was introduced by a simple chemical process, followed by photoelectrochemical deposition of MoSx to form MoSx/Ag nanostructures in cross-shaped catalyst pattern arrays. Ag modulated the surface electronic property of MoSx to improve the reaction kinetics as well as helped a charge transport at the Ag|p-Si(100) junction. The physically stable adhesion of catalysts was also achieved despite the ∼40 nm thick catalysts owing to the interfacial Ag nanostructure. This work contributes to further understand the complex multistep HER from light absorption to charge transfer to protons, helping to develop cost-effective and efficient photocathodes.

18.
ACS Appl Mater Interfaces ; 13(36): 43396-43403, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472833

RESUMO

Although there has been extensive development and exploration of small-scale robots, the technological challenges associated with their complicated and high-cost fabrication processes remain unresolved. Here, we report a one-step, bi-material, high-resolution three-dimensional (3D) printing method for the fabrication of multi-stimuli-responsive microactuators. This method exploits a two-phase femtoliter ink meniscus formed on a double-barreled theta micropipette to continuously print a freestanding bilayer microstructure, which undergoes an asymmetric volume change upon the adsorption or desorption of water. We show that the 3D-printed bilayer microstructures exhibit reversible, reproducible actuation in ambient humidity or under illumination with infrared light. Our 3D printing approach can assemble bilayer segments for programming microscale actuation, as demonstrated by proof-of-concept experiments. We expect that this method will serve as the basis for flexible, programmable, one-step routes for the assembly of small-scale intelligent actuators.

19.
Allergy Asthma Immunol Res ; 13(4): 623-637, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34212548

RESUMO

PURPOSE: Diagnostic tests for allergen sensitization should reflect real exposure. We made 6 new bony fish extracts, which are consumed popularly in Korea, and evaluated their allergenicity and stability. METHODS: We manufactured fish extracts from codfish, mackerel, common eel, flounder, cutlass, and catfish. Protein and parvalbumin (PV) were evaluated by Bradford assay, 2-site enzyme-linked immunosorbent assay, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and anti-PV immunoblotting. The immunoglobulin E (IgE) reactivities of the extracts were evaluated with ImmunoCAP and IgE immunoblotting using sera from 24 Korean fish allergy patients, 5 asymptomatic sensitizers, and 11 non-atopic subjects. Stability of the extracts stored in 4 different buffers were evaluated for up to a year. RESULTS: The protein concentrations of commercial SPT fish extracts varied with up to a 7.5-fold difference. SDS-PAGE showed marked differences in the PV concentrations of commercial SPT reagents. Specific IgE measurements for the following investigatory fish extracts-iCodfish, iMackerel, and iEel-were concordant with that of their corresponding Phadia ImmunoCAP measurements. ImmunoCAP results showed marked IgE cross-reactivity among the fish species, and the overall sensitivity of ImmunoCAP with the investigatory fish extracts for identification of culprit fish species was 85.7%. The protein and PV concentrations in the investigatory extracts were highly stable in saline with 0.3% phenol-50% glycerol at 4°C for up to a year. CONCLUSIONS: The commercial SPT fish extracts exhibited considerable variation in terms of allergenicity, which may impact on diagnostic accuracy. Our new fish extracts have sufficient allergenicity and stability and may be adequate to various clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...