Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cancer ; 10(4): 312-331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355356

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a medical breakthrough in the treatment of B cell malignancies. There is intensive focus on developing solid tumor-targeted CAR-T cell therapies. Although clinically approved CAR-T cell therapies target B cell lineage antigens, solid tumor targets include neoantigens and tumor-associated antigens (TAAs) with diverse roles in tumor biology. Multiple early-stage clinical trials now report encouraging signs of efficacy for CAR-T cell therapies that target solid tumors. We review the landscape of solid tumor target antigens from the perspective of cancer biology and gene regulation, together with emerging clinical data for CAR-T cells targeting these antigens. We then discuss emerging synthetic biology strategies and their application in the clinical development of novel cellular immunotherapies.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Antígenos de Neoplasias , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Biologia
2.
Cell Chem Biol ; 31(2): 338-348.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989314

RESUMO

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFß signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFß and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Imunoterapia Adotiva/métodos , Ubiquitinação , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...