Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(10): 1495-1505, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723298

RESUMO

In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance. How then can the biogenesis of Y-linked piRNAs be initiated? Here, using Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA locus as a model, we show that Su(Ste) piRNAs are made in the early male germline via 5'-to-3' phased piRNA biogenesis initiated by maternally deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) piRNAs from XXY mothers obviates the need for phased piRNA biogenesis in sons. Together, our study uncovers a developmentally programmed, intergenerational mechanism that allows fly mothers to protect their sons using a Y-linked piRNA locus.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA de Interação com Piwi , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/genética
3.
Elife ; 112022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35968765

RESUMO

Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(-) mutants, but timed similarly in let-7(-) nhr-23(-) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3' UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentação , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Muda/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Ácido Retinoico/metabolismo , Retinoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 17(11): e1009881, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780472

RESUMO

Many tissue-specific stem cells maintain the ability to produce multiple cell types during long periods of non-division, or quiescence. FOXO transcription factors promote quiescence and stem cell maintenance, but the mechanisms by which FOXO proteins promote multipotency during quiescence are still emerging. The single FOXO ortholog in C. elegans, daf-16, promotes entry into a quiescent and stress-resistant larval stage called dauer in response to adverse environmental cues. During dauer, stem and progenitor cells maintain or re-establish multipotency to allow normal development to resume after dauer. We find that during dauer, daf-16/FOXO prevents epidermal stem cells (seam cells) from prematurely adopting differentiated, adult characteristics. In particular, dauer larvae that lack daf-16 misexpress collagens that are normally adult-enriched. Using col-19p::gfp as an adult cell fate marker, we find that all major daf-16 isoforms contribute to opposing col-19p::gfp expression during dauer. By contrast, daf-16(0) larvae that undergo non-dauer development do not misexpress col-19p::gfp. Adult cell fate and the timing of col-19p::gfp expression are regulated by the heterochronic gene network, including lin-41 and lin-29. lin-41 encodes an RNA-binding protein orthologous to LIN41/TRIM71 in mammals, and lin-29 encodes a conserved zinc finger transcription factor. In non-dauer development, lin-41 opposes adult cell fate by inhibiting the translation of lin-29, which directly activates col-19 transcription and promotes adult cell fate. We find that during dauer, lin-41 blocks col-19p::gfp expression, but surprisingly, lin-29 is not required in this context. Additionally, daf-16 promotes the expression of lin-41 in dauer larvae. The col-19p::gfp misexpression phenotype observed in dauer larvae with reduced daf-16 requires the downregulation of lin-41, but does not require lin-29. Taken together, this work demonstrates a novel role for daf-16/FOXO as a heterochronic gene that promotes expression of lin-41/TRIM71 to contribute to multipotent cell fate in a quiescent stem cell model.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Linhagem da Célula , Fatores de Transcrição Forkhead/fisiologia , Fatores de Transcrição/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Colágeno/metabolismo , Fatores de Transcrição Forkhead/genética , Larva/citologia , Larva/metabolismo , Fatores de Transcrição/genética
5.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34668544

RESUMO

Hypoxia inhibits the tricarboxylic acid (TCA) cycle and leaves glycolysis as the primary metabolic pathway responsible for converting glucose into usable energy. However, the mechanisms that compensate for this loss in energy production due to TCA cycle inactivation remain poorly understood. Glycolysis enzymes are typically diffuse and soluble in the cytoplasm under normoxic conditions. In contrast, recent studies have revealed dynamic compartmentalization of glycolysis enzymes in response to hypoxic stress in yeast, C. elegans and mammalian cells. These messenger ribonucleoprotein (mRNP) structures, termed glycolytic (G) bodies in yeast, lack membrane enclosure and display properties of phase-separated biomolecular condensates. Disruption of condensate formation correlates with defects such as impaired synaptic function in C. elegans neurons and decreased glucose flux in yeast. Concentrating glycolysis enzymes into condensates may lead to their functioning as 'metabolons' that enhance rates of glucose utilization for increased energy production. Besides condensates, glycolysis enzymes functionally associate in other organisms and specific tissues through protein-protein interactions and membrane association. However, as discussed in this Review, the functional consequences of coalescing glycolytic machinery are only just beginning to be revealed. Through ongoing studies, we anticipate the physiological importance of metabolic regulation mediated by the compartmentalization of glycolysis enzymes will continue to emerge.


Assuntos
Caenorhabditis elegans , Glicólise , Animais , Ciclo do Ácido Cítrico , Glucose , Saccharomyces cerevisiae
6.
Elife ; 102021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587037

RESUMO

Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Masculino , RNA Interferente Pequeno/genética , Especificidade da Espécie , Espermatogênese , Fatores de Transcrição/genética
7.
Curr Opin Cell Biol ; 67: 118-140, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33152557

RESUMO

MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.


Assuntos
Diferenciação Celular/genética , MicroRNAs/genética , Animais , Desenvolvimento Embrionário/genética , Humanos , MicroRNAs/biossíntese , Modelos Biológicos , Neurogênese/genética , Transcriptoma/genética
8.
Elife ; 92020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32298230

RESUMO

In hypoxic stress conditions, glycolysis enzymes assemble into singular cytoplasmic granules called glycolytic (G) bodies. G body formation in yeast correlates with increased glucose consumption and cell survival. However, the physical properties and organizing principles that define G body formation are unclear. We demonstrate that glycolysis enzymes are non-canonical RNA binding proteins, sharing many common mRNA substrates that are also integral constituents of G bodies. Targeting nonspecific endoribonucleases to G bodies reveals that RNA nucleates G body formation and maintains its structural integrity. Consistent with a phase separation mechanism of biogenesis, recruitment of glycolysis enzymes to G bodies relies on multivalent homotypic and heterotypic interactions. Furthermore, G bodies fuse in vivo and are largely insensitive to 1,6-hexanediol, consistent with a hydrogel-like composition. Taken together, our results elucidate the biophysical nature of G bodies and demonstrate that RNA nucleates phase separation of the glycolysis machinery in response to hypoxic stress.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Glicólise/fisiologia , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Endorribonucleases/metabolismo
9.
PLoS Genet ; 16(3): e1008648, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32168327

RESUMO

The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Inativação Gênica , Células Germinativas , Cinesinas/genética , Masculino , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo
10.
Genome Res ; 30(2): 299-312, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024661

RESUMO

Current transcriptome annotations have largely relied on short read lengths intrinsic to the most widely used high-throughput cDNA sequencing technologies. For example, in the annotation of the Caenorhabditis elegans transcriptome, more than half of the transcript isoforms lack full-length support and instead rely on inference from short reads that do not span the full length of the isoform. We applied nanopore-based direct RNA sequencing to characterize the developmental polyadenylated transcriptome of C. elegans Taking advantage of long reads spanning the full length of mRNA transcripts, we provide support for 23,865 splice isoforms across 14,611 genes, without the need for computational reconstruction of gene models. Of the isoforms identified, 3452 are novel splice isoforms not present in the WormBase WS265 annotation. Furthermore, we identified 16,342 isoforms in the 3' untranslated region (3' UTR), 2640 of which are novel and do not fall within 10 bp of existing 3'-UTR data sets and annotations. Combining 3' UTRs and splice isoforms, we identified 28,858 full-length transcript isoforms. We also determined that poly(A) tail lengths of transcripts vary across development, as do the strengths of previously reported correlations between poly(A) tail length and expression level, and poly(A) tail length and 3'-UTR length. Finally, we have formatted this data as a publicly accessible track hub, enabling researchers to explore this data set easily in a genome browser.


Assuntos
Caenorhabditis elegans/genética , Genoma/genética , RNA Mensageiro/genética , Transcriptoma/genética , Processamento Alternativo/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Anotação de Sequência Molecular , Análise de Sequência de RNA
11.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442422

RESUMO

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , DNA de Helmintos/química , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Nucleossomos/química , Multimerização Proteica , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , DNA de Helmintos/metabolismo , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura
12.
Annu Rev Genet ; 53: 289-311, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31150586

RESUMO

In animals, small noncoding RNAs that are expressed in the germline and transmitted to progeny control gene expression to promote fertility. Germline-expressed small RNAs, including endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), drive the repression of deleterious transcripts such as transposons, repetitive elements, and pseudogenes. Recent studies have highlighted an important role for small RNAs in transgenerational epigenetic inheritance via regulation of heritable chromatin marks; therefore, small RNAs are thought to convey an epigenetic memory of genomic self and nonself elements. Small RNA pathways are highly conserved in metazoans and have been best described for the model organism Caenorhabditis elegans. In this review, we describe the biogenesis, regulation, and function of C. elegans endo-siRNAs and piRNAs, along with recent insights into how these distinct pathways are integrated to collectively regulate germline gene expression, transgenerational epigenetic inheritance, and ultimately, animal fertility.


Assuntos
Caenorhabditis elegans/genética , Cromatina/genética , Células Germinativas/fisiologia , Pequeno RNA não Traduzido/genética , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/genética , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Masculino , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transgenes
13.
Dev Cell ; 47(2): 142-143, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30352175

RESUMO

MicroRNA-mediated gene silencing can occur by either target mRNA degradation or translational repression. In this issue of Developmental Cell, Dallaire et al. (2018) show in C. elegans that tissue-specific composition of the silencing complex, miRISC, plays a major role in determining the fate of target mRNAs.


Assuntos
MicroRNAs , RNA Mensageiro , Animais , Caenorhabditis elegans/genética , Estabilidade de RNA , Complexo de Inativação Induzido por RNA
14.
Mol Cell ; 69(5): 787-801.e8, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499134

RESUMO

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Inativação Gênica , MicroRNAs/metabolismo , RNA de Helmintos/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , RNA de Helmintos/genética , Proteína FUS de Ligação a RNA/genética
15.
Cell Rep ; 20(4): 895-908, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746874

RESUMO

Glycolysis is upregulated under conditions such as hypoxia and high energy demand to promote cell proliferation, although the mechanism remains poorly understood. We find that hypoxia in Saccharomyces cerevisiae induces concentration of glycolytic enzymes, including the Pfk2p subunit of the rate-limiting phosphofructokinase, into a single, non-membrane-bound granule termed the "glycolytic body" or "G body." A yeast kinome screen identifies the yeast ortholog of AMP-activated protein kinase, Snf1p, as necessary for G-body formation. Many G-body components identified by proteomics are required for G-body integrity. Cells incapable of forming G bodies in hypoxia display abnormal cell division and produce inviable daughter cells. Conversely, cells with G bodies show increased glucose consumption and decreased levels of glycolytic intermediates. Importantly, G bodies form in human hepatocarcinoma cells in hypoxia. Together, our results suggest that G body formation is a conserved, adaptive response to increase glycolytic output during hypoxia or tumorigenesis.


Assuntos
Glucose/metabolismo , Hipóxia/metabolismo , Cromatografia Líquida , Glicólise/genética , Glicólise/fisiologia , Células Hep G2 , Humanos , Hipóxia/genética , Imunoprecipitação , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Elife ; 62017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650797

RESUMO

The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.


Assuntos
Autoantígenos/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa , Antígeno SS-B
17.
Dev Cell ; 41(4): 408-423.e7, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28535375

RESUMO

Germline-expressed endogenous small interfering RNAs (endo-siRNAs) transmit multigenerational epigenetic information to ensure fertility in subsequent generations. In Caenorhabditis elegans, nuclear RNAi ensures robust inheritance of endo-siRNAs and deposition of repressive H3K9me3 marks at target loci. How target silencing is maintained in subsequent generations is poorly understood. We discovered that morc-1 is essential for transgenerational fertility and acts as an effector of endo-siRNAs. Unexpectedly, morc-1 is dispensable for siRNA inheritance but is required for target silencing and maintenance of siRNA-dependent chromatin organization. A forward genetic screen identified mutations in met-1, which encodes an H3K36 methyltransferase, as potent suppressors of morc-1(-) and nuclear RNAi mutant phenotypes. Further analysis of nuclear RNAi and morc-1(-) mutants revealed a progressive, met-1-dependent enrichment of H3K36me3, suggesting that robust fertility requires repression of MET-1 activity at nuclear RNAi targets. Without MORC-1 and nuclear RNAi, MET-1-mediated encroachment of euchromatin leads to detrimental decondensation of germline chromatin and germline mortality.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Células Germinativas/metabolismo , Padrões de Herança/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Animais , Núcleo Celular/metabolismo , Genoma , Células Germinativas/citologia , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Modelos Biológicos , Mutação/genética , RNA Interferente Pequeno/metabolismo
18.
Methods Mol Biol ; 1361: 77-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26483017

RESUMO

An estimated 5-10 % of protein-coding genes in eukaryotic genomes encode RNA-binding proteins (RBPs). Through dynamic changes in RNA recognition, RBPs posttranscriptionally regulate the biogenesis, transport, inheritance, storage, and degradation of RNAs. Understanding such widespread RBP-mediated posttranscriptional regulatory mechanisms requires comprehensive discovery of the in vivo binding sites of RBPs. Here, we describe the experimental procedures of the gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) approach we recently developed for capturing and sequencing regions of the transcriptome bound by RBPs in budding yeast. Unlike the standard PAR-CLIP method, which identifies the bound RNA substrates for a single RBP, the gPAR-CLIP-seq method was developed to isolate and sequence all mRNA sites bound by the cellular "RBPome." The gPAR-CLIP-seq approach is readily applicable to a variety of organisms and cell lines to profile global RNA-protein interactions underlying posttranscriptional gene regulation. The complete landscape of RBP binding sites provides insights to the function of all RNA cis-regulatory elements in an organism and reveals fundamental mechanisms of posttranscriptional gene regulation.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Sítios de Ligação/genética , Células Eucarióticas , Regulação da Expressão Gênica , Genoma , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/química
19.
Methods Mol Biol ; 1361: 91-104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26483018

RESUMO

Protein-RNA interactions are integral components of posttranscriptional gene regulatory processes including mRNA processing and assembly of cellular architectures. Dysregulation of RNA-binding protein (RBP) expression or disruptions in RBP-RNA interactions underlie a variety of human pathologies and genetic diseases including cancer and neurodegenerative diseases (reviewed in (Cooper et al., Cell 136(4):777-793, 2009; Darnell, Cancer Res Treat 42(3):125-129, 2010; Lukong et al., Trends Genet 24 (8):416-425, 2008)). Recent studies have uncovered only a small proportion of the extensive RBP-RNA interactome in any organism (Baltz et al., Mol Cell 46(5):674-690, 2012; Castello et al., Cell 149(6):1393-1406, 2012; Freeberg et al., Genome Biol 14(2):R13, 2013; Hogan et al., PLoS Biol 6(10):e255, 2008; Mitchell et al., Nat Struct Mol Biol 20(1):127-133, 2013; Tsvetanova et al. PLoS One 5(9): pii: e12671, 2010; Schueler et al., Genome Biol 15(1):R15, 2014; Silverman et al., Genome Biol 15(1):R3, 2014). To expand our understanding of how RBP-RNA interactions govern RNA-related processes, we developed gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) for capturing and sequencing all regions of the Saccharomyces cerevisiae transcriptome bound by RBPs (Freeberg et al., Genome Biol 14(2):R13, 2013). This chapter describes a pipeline for bioinformatic analysis of gPAR-CLIP-seq data. The first half of this pipeline can be implemented by running locally installed programs or by running the programs using the Galaxy platform (Blankenberg et al., Curr Protoc Mol Biol. Chapter 19:Unit 19 10 11-21, 2010; Giardine et al., Genome Res 15 (10):1451-1455, 2005; Goecks et al., Genome Biol 11(8):R86, 2010). The second half of this pipeline can be implemented by user-generated code in any language using the pseudocode provided as a template.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Ligação a RNA/genética , Sítios de Ligação/genética , Células Eucarióticas , Regulação da Expressão Gênica , Genoma , Humanos , RNA/genética , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae/genética , Transcriptoma/genética
20.
Proc Natl Acad Sci U S A ; 112(52): E7213-22, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26669440

RESUMO

MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caseína Quinase II/genética , MicroRNAs/genética , Interferência de RNA , RNA Nucleotidiltransferases/genética , Complexo de Inativação Induzido por RNA/genética , Animais , Animais Geneticamente Modificados , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase II/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ligação Proteica , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Serina/genética , Serina/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...