Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Semin Radiat Oncol ; 34(1): 129-134, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105087

RESUMO

The introduction of MR-guided treatment machines into the radiation oncology clinic has provided unique challenges for the radiotherapy QA program. These MR-linac systems require that existing QA procedures be adapted to verify linac performance within the magnetic field environment and that new procedures be added to ensure acceptable image quality for the MR system. While both high and low-field MR-linac options exist, this chapter is intended to provide a structure for implementing a QA program within the low-field MR environment. This review is divided into three sections. The first section focuses on machine QA tasks including mechanical and dosimetric verification. The second section is concentrated on the procedures implemented for imaging QA. Finally, the last section covers patient specific QA tasks including special considerations related to the performance of patient specific QA within the framework of online adaptive radiotherapy.


Assuntos
Aceleradores de Partículas , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radiometria
2.
J Appl Clin Med Phys ; 24(6): e13919, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37278646

RESUMO

To evaluate the image quality, dosimetric properties, setup reproducibility, and planar cine motion detection of a high-resolution brain coil and integrated stereotactic brain immobilization system that constitute a new brain treatment package (BTP) on a low-field magnetic resonance imaging (MRI) linear accelerator (MR-linac). Image quality of the high-resolution brain coil was evaluated with the 17 cm diameter spherical phantom and the American College of Radiology (ACR) Large MRI Phantom. Patient imaging studies approved by the institutional review board (IRB) assisted in selecting image acquisition parameters. Radiographic and dosimetric evaluation of the high-resolution brain coil and the associated immobilization devices was performed using dose calculations and ion chamber measurements. End-to-end testing was performed simulating a cranial lesion in a phantom. Inter-fraction setup variability and motion detection tests were evaluated on four healthy volunteers. Inter-fraction variability was assessed based on three repeat setups for each volunteer. Motion detection was evaluated using three-plane (axial, coronal, and sagittal) MR-cine imaging sessions, where volunteers were asked to perform a set of specific motions. The images were post-processed and evaluated using an in-house program. Contrast resolution of the high-resolution brain coil is superior to the head/neck and torso coils. The BTP receiver coils have an average HU value of 525 HU. The most significant radiation attenuation (3.14%) of the BTP, occurs through the lateral portion of the overlay board where the high-precision lateral-profile mask clips attach to the overlay. The greatest inter-fraction setup variability occurred in the pitch (average 1.08 degree) and translationally in the superior/inferior direction (average 4.88 mm). Three plane cine imaging with the BTP was able to detect large and small motions. Small voluntary motions, sub-millimeter in magnitude (maximum 0.9 mm), from motion of external limbs were detected. Imaging tests, inter-fraction setup variability, attenuation, and end-to-end measurements were quantified and performed for the BTP. Results demonstrate better contrast resolution and low contrast detectability that allows for better visualization of soft tissue anatomical changes relative to head/neck and torso coil systems.


Assuntos
Neoplasias Encefálicas , Humanos , Reprodutibilidade dos Testes , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
3.
J Appl Clin Med Phys ; 23(12): e13784, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36237114

RESUMO

PURPOSE: A set of treatment planning strategies were designed and retrospectively implemented for locally advanced, non-small cell lung cancer (NSCLC) patients in order to minimize cardiac dose without compromising target coverage goals. METHODS: Retrospective analysis was performed for 20 NSCLC patients prescribed to 60-66 Gy that received a mean heart dose (MHD) ≥10 Gy. Three planning approaches were designed and implemented. The first was a multi-isocentric (MI) volume-modulated arc therapy (VMAT) approach (HEART_MI) with one isocenter located within the tumor and the second chosen up to 10 cm away longitudinally. The second was a noncoplanar (NCP) VMAT approach (HEART_NCP) utilizing up to three large couch angles and a standard arc at couch 0. The final planning strategy took a mixed approach (HEART_HYBRID) utilizing the HEART_NCP strategy for two thirds of the treatment combined with a plan utilizing a pair of opposite-opposed gantry angles for the remaining treatments. Investigational plans were compared to original plans using dose-volume histogram metrics such as organ volume receiving greater than x Gy (Vx) or mean dose (Dmean). RESULTS: Although there was a small but statistically significant decrease in internal target volume coverage for HEART_MI plans and, conversely, a statistically significant increase for HEART_NCP plans, all generated plans met physician-prescribed target constraints. For heart dose, there were statistically significant decreases in all heart metrics and particularly MHD for the HEART_MI (9.8 vs. 15.4 Gy [p < 0.001], respectively), HEART_NCP (9.2 vs. 15.4 Gy [p < 0.001]), respectively), and HEART_HYBRID (7.9 vs. 15.4 Gy [p < 0.001], respectively) strategies. CONCLUSIONS: The strategy providing the best compromise between plan quality and cardiac dose reduction was HEART_NCP, which produced MHD reductions of 37.6% ± 12.9% (6.2 ± 3.4 Gy) relative to original plans. This strategy could potentially reduce adverse cardiac events, leading to improved quality of life for these patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Estudos de Viabilidade , Qualidade de Vida , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Órgãos em Risco
4.
Int J Radiat Oncol Biol Phys ; 114(5): 950-967, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901978

RESUMO

PURPOSE: Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver Magnetic Resonance-guided Radiation Therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiation therapy in treatment of oligometastatic disease. Here, we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS: We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS: Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiation therapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS: The promising early indications of safety and effectiveness of MRgRT for stereotactic body radiation therapy-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.


Assuntos
Neoplasias , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Aceleradores de Partículas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia
5.
Med Phys ; 48(11): 6930-6940, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34487357

RESUMO

PURPOSE: The acquisition of multiparametric quantitative magnetic resonance imaging (qMRI) is becoming increasingly important for functional characterization of cancer prior to- and throughout the course of radiation therapy. The feasibility of a qMRI method known as magnetic resonance fingerprinting (MRF) for rapid T1 and T2 mapping was assessed on a low-field MR-linac system. METHODS: A three-dimensional MRF sequence was implemented on a 0.35T MR-guided radiotherapy system. MRF-derived measurements of T1 and T2 were compared to those obtained with gold standard single spin echo methods, and the impacts of the radiofrequency field homogeneity and scan times ranging between 6 and 48 min were analyzed by acquiring between 1 and 8 spokes per time point in a standard quantitative system phantom. The short-term repeatability of MRF was assessed over three measurements taken over a 10-h period. To evaluate transferability, MRF measurements were acquired on two additional MR-guided radiotherapy systems. Preliminary human volunteer studies were performed. RESULTS: The phantom benchmarking studies showed that MRF is capable of mapping T1 and T2 values within 8% and 10% of gold standard measures, respectively, at 0.35T. The coefficient of variation of T1 and T2 estimates over three repeated scans was < 5% over a broad range of relaxation times. The T1 and T2 times derived using a single-spoke MRF acquisition across three scanners were near unity and mean percent errors in T1 and T2 estimates using the same phantom were < 3%. The mean percent differences in T1 and T2 as a result of truncating the scan time to 6 min over the large range of relaxation times in the system phantom were 0.65% and 4.05%, respectively. CONCLUSIONS: The technical feasibility and accuracy of MRF on a low-field MR-guided radiation therapy device has been demonstrated. MRF can be used to measure accurate T1 and T2 maps in three dimensions from a brief 6-min scan, offering strong potential for efficient and reproducible qMRI for future clinical trials in functional plan adaptation and tumor/normal tissue response assessment.


Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Encéfalo , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
6.
Radiat Oncol ; 16(1): 117, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174932

RESUMO

BACKGROUND: The purpose of this study is to comprehensively evaluate the suitability of Gafchromic EBT3 and EBT-XD film for dosimetric quality assurance in 0.35 T MR-guided radiotherapy. METHODS: A 0.35 T magnetic field strength was utilized to evaluate magnetic field effects on EBT3 and EBT-XD Gafchromic films by studying the effect of film exposure time within the magnetic field using two timing sequences and film not exposed to MR, the effect of magnetic field exposure on the crystalline structure of the film, and the effect of orientation of the film with respect to the bore within the magnetic field. The orientation of the monomer crystal was qualitatively evaluated using scanning electron microscopy (SEM) compared to unirradiated film. Additionally, dosimetric impact was evaluated through measurements of a series of open field irradiations (0.83 × 0.83-cm2 to 19.92 × 19.92-cm2) and patient specific quality assurance measurements. Open fields were compared to planned dose and an independent dosimeter. Film dosimetry was applied to twenty conventional and twenty stereotactic body radiotherapy (SBRT) patient specific quality assurance cases. RESULTS: No visual changes in crystal orientation were observed in any evaluated SEM images nor were any optical density differences observed between films irradiated inside or outside the magnetic field for both EBT3 and EBT-XD film. At small field sizes, the average difference along dose profiles measured in film compared to the same points measured using an independent dosimeter and to predicted treatment planning system values was 1.23% and 1.56%, respectively. For large field sizes, the average differences were 1.91% and 1.21%, respectively. In open field tests, the average gamma pass rates were 99.8% and 97.2%, for 3%/3 mm and 3%/1 mm, respectively. The median (interquartile range) 3%/3 mm gamma pass rates in conventional QA cases were 98.4% (96.3 to 99.2%), and 3%/1 mm in SBRT QA cases were 95.8% (95.0 to 97.3%). CONCLUSIONS: MR exposure at 0.35 T had negligible effects on EBT3 and EBT-XD Gafchromic film. Dosimetric film results were comparable to planned dose, ion chamber and diode measurements.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/cirurgia , Aceleradores de Partículas/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Humanos , Campos Magnéticos , Doses de Radiação , Radiocirurgia
7.
Med Phys ; 46(5): 2347-2355, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30838680

RESUMO

PURPOSE: MR-guided radiation therapy (RT) offers unparalleled soft tissue contrast for localization and target tracking. However, MRI distortions may be detrimental to high precision RT. This work characterizes the gradient nonlinearity (GNL) and total distortions over the first year of clinical operation of a 0.35T MR-linac. METHODS: For GNL characterization, an in-house large field of view (FOV) phantom (60 × 42.5 × 55 cm3 , >6000 spherical landmarks) was configured and scanned at four timepoints with forward/reverse read polarities (Gradient Echo sequence, FA/TR/TE = 28°/30 ms/6 ms). GNL was measured in Anterior-Posterior (AP), Left-Right (LR), and Superior-Inferior (SI) frequency-encoding directions based on deviation of the auto-segmented landmark centroids between rigidly registered MR and CT images and assessed based on radial distance from magnet isocenter. Total distortion was assessed using a 30 × 30 cm2 grid phantom oriented along the cardinal axes over >1 year of operation. RESULTS: The scanner's spatial integrity within the first ~10 months was stable (maximum total distortion variation = 10/6/8%, maximum distortion = 1.41/0.99/1.56 mm in Axial/Coronal/Sagittal planes, respectively). GNL distortions measured during this time period <10 cm from isocenter were (-0.74, 0.45), (-0.67, 0.53), and (-0.86, 0.70) mm in AP/LR/SI directions. In the 10-20 cm range, <1.5% of the distortions exceeded 2 mm in the AP and LR axes while <4% of the distortions exceeded 2 mm for SI. After major repairs and magnet re-shim, detectable changes were observed in total and GNL distortions (20% reduction in AP and 36% increase in SI direction in the 20-25 cm range). Across all timepoints and axes, 38-53% of landmarks in the 20-25 cm range were displaced by >1 mm. CONCLUSIONS: GNL distortions were negligible within a 10 cm radius from isocenter. However, in the periphery, non-negligible distortions of up to ~7 mm were observed, which may necessitate GNL corrections for MR-IGRT for treatment sites distant from magnet isocenter.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas , Processamento de Imagem Assistida por Computador , Dinâmica não Linear , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem
8.
J Appl Clin Med Phys ; 20(1): 265-275, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411477

RESUMO

MR-only treatment planning and MR-IGRT leverage MRI's powerful soft tissue contrast for high-precision radiation therapy. However, anthropomorphic MR-compatible phantoms are currently limited. This work describes the development and evaluation of a custom-designed, modular, pelvic end-to-end (PETE) MR-compatible phantom to benchmark MR-only and MR-IGRT workflows. For construction considerations, subject data were assessed for phantom/skeletal geometry and internal organ kinematics to simulate average male pelvis anatomy. Various materials for the bone, bladder, and rectum were evaluated for utility within the phantom. Once constructed, PETE underwent CT-SIM, MR-Linac, and MR-SIM imaging to qualitatively assess organ visibility. Scans were acquired with various bladder and rectal volumes to assess component interactions, filling capabilities, and filling reproducibility via volume and centroid differences. PETE simulates average male pelvis anatomy and comprises an acrylic body oval (height/width = 23.0/38.1 cm) and a cast-mold urethane skeleton, with silicone balloons simulating bladder and rectum, a silicone sponge prostate, and hydrophilic poly(vinyl alcohol) foam to simulate fat/tissue separation between organs. Access ports enable retrofitting the phantom with other inserts including point/film-based dosimetry options. Acceptable contrast was achievable in CT-SIM and MR-Linac images. However, the bladder was challenging to distinguish from background in CT-SIM. The desired contrast for T1-weighted and T2-weighted MR-SIM (dark and bright bladders, respectively) was achieved. Rectum and bone exhibited no MR signal. Inputted volumes differed by <5 and <10 mL from delineated rectum (CT-SIM) and bladder (MR-SIM) volumes. Increasing bladder and rectal volumes induced organ displacements and shape variations. Reproduced volumes differed by <4.5 mL, with centroid displacements <1.4 mm. A point dose measurement with an MR-compatible ion chamber in an MR-Linac was within 1.5% of expected. A novel, modular phantom was developed with suitable materials and properties that accurately and reproducibly simulate status changes with multiple dosimetry options. Future work includes integrating more realistic organ models to further expand phantom options.


Assuntos
Imageamento por Ressonância Magnética/métodos , Pelve/efeitos da radiação , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas , Pelve/patologia , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
9.
Med Phys ; 45(12): 5366-5375, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30307625

RESUMO

PURPOSE: To model Head-and-Neck anatomy from daily Cone Beam-CT (CBCT) images over the course of fractionated radiotherapy using principal component analysis (PCA). METHODS AND MATERIALS: Eighteen oropharyngeal Head-and-Neck cancer patients, treated with volumetric modulated arc therapy (VMAT), were included in this retrospective study. Normal organs, including the parotid and submandibular glands, mandible, pharyngeal constrictor muscles (PCMs), and spinal cord were contoured using daily CBCT image datasets. PCA models for each organ were developed for individual patients (IP) and the entire patient cohort/population (PP). The first 10 principal components (PCs) were extracted for all models. Analysis included cumulative and individual PCs for each organ and patient, as well as the aggregate organ/patient population; comparisons were made using the root-mean-square (RMS) of the percentage predicted spatial displacement for each PC. RESULTS: Overall, spatial displacement prediction was achieved at the 95% confidence level (CL) for the first three to four PCs for all organs, based on IP models. For PP models, the first four PCs predicted spatial displacement at the 80%-89% CL. Differences in percentage predicted spatial displacement between mean IP models for each organ ranged from 2.8% ± 1.8% (1st PC) to 0.6% ± 0.4% (4th PC). Differences in percentage predicted spatial displacement between IP models vs the mean IP model for each organ based on the 1st PC were <12.9% ± 6.9% for all organs. Differences in percentage predicted spatial displacement between IP and PP models based on all organs and patients for the 1st and 2nd PC were <11.7% ± 2.2%. CONCLUSION: Tissue changes during fractionated radiotherapy observed on daily CBCT in patients with Head-and-Neck cancers, were modeled using PCA. In general, spatial displacement for organs-at-risk was predicted for the first 4 principal components at the 95% confidence levels (CL), for individual patient (IP) models, and at the 80%-89% CL for population-based patient (PP) models. The IP and PP models were most predictive of changes in glandular organs and pharyngeal constrictor muscles, respectively.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Análise de Componente Principal , Humanos , Processamento de Imagem Assistida por Computador
10.
J Appl Clin Med Phys ; 19(6): 217-225, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30207053

RESUMO

PURPOSE: This work characterizes a novel exponential 4DCT reconstruction algorithm (EXPO), in phantom and patient, to determine its impact on image quality as compared to the standard cosine-squared weighted 4DCT reconstruction. METHODS: A motion platform translated objects in the superior-inferior (S-I) direction at varied breathing rates (8-20 bpm) and couch pitches (0.06-0.1) to evaluate interplay between parameters. Ten-phase 4DCTs were acquired and data were reconstructed with cosine squared and EXPO weighting. To quantify the magnitude of image blur, objects were translated in the anterior-posterior (A-P) and S-I directions for full-width half maximum (FWHM) analysis between both 4DCT algorithms and a static case. 4DCT sinogram data for 10 patients were retrospectively reconstructed using both weighting factors. Image subtractions elucidated intensity and boundary differences. Subjective image quality grading (presence of image artifacts, noise, spatial resolution (i.e., lung/liver boundary sharpness), and overall image quality) was conducted yielding 200 evaluations. RESULTS: After taking static object size into account, the FWHM of EXPO reconstructions in the A-P direction was 3.3 ± 1.7 mm (range: 0-4.9) as compared to cosine squared 9.8 ± 4.0 mm (range: 2.6-14.4). The FWHM of objects translated in the S-I direction reconstructed with EXPO agreed better with the static FWHM than the cosine-squared reconstructions. Slower breathing periods, faster couch pitches, and intermediate 4DCT phases had the largest reductions of blurring with EXPO. 18 of 60 comparisons of artifacts were improved with EXPO reconstruction, whereas no appreciable changes were observed in image quality scores. In 18 of 20 cases, EXPO provided sharper images although the reduced projections also increased baseline noise. CONCLUSION: Exponential weighted 4DCT offers potential for reducing image blur (i.e., improving image sharpness) in 4DCT with a tendency to reduce artifacts. Future work will involve evaluating the impact on treatment planning including delineation ability and dose calculation.


Assuntos
Neoplasias Abdominais/radioterapia , Neoplasias da Mama/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Abdominais/diagnóstico por imagem , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Órgãos em Risco/efeitos da radiação , Prognóstico , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Respiração , Estudos Retrospectivos
11.
J Appl Clin Med Phys ; 17(3): 128-137, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167270

RESUMO

Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9 ± 4.5, 3.7 ± 2.1, and 1.2 ± 1.4 mm without. Incorporating VBF into 4D MRI substantially reduced acquisition time, breathing irregularity, and image artifacts. However, differences in excursion were observed, thus implementation will be required throughout the RT workflow.


Assuntos
Biorretroalimentação Psicológica , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Percepção Visual , Adulto , Humanos , Pessoa de Meia-Idade , Movimento , Interpretação de Imagem Radiográfica Assistida por Computador , Respiração , Razão Sinal-Ruído , Adulto Jovem
12.
Int J Radiat Oncol Biol Phys ; 95(4): 1281-9, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27209500

RESUMO

PURPOSE: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). METHODS AND MATERIALS: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. RESULTS: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, -0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, -0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, -0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, -0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, -0.3 to 1.2 mm), and 0.2 ± 0.3 mm (range, -0.2 to 1.2 mm) for the S-I, L-R, and A-P axes, respectively. The CT-SIM and synCT derived margins were <0.3 mm different. CONCLUSION: DRRs generated by synCT were in close agreement with CT-SIM. Planar and volumetric image registrations to synCT-derived targets were comparable with CT for phantom and patients. This validation is the next step toward MR-only planning for the brain.


Assuntos
Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Humanos , Pessoa de Meia-Idade
13.
Int J Radiat Oncol Biol Phys ; 93(3): 497-506, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26460991

RESUMO

PURPOSE: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. METHODS AND MATERIALS: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. RESULTS: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone-air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. CONCLUSIONS: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain.


Assuntos
Ar , Neoplasias Encefálicas/diagnóstico , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Pessoa de Meia-Idade
14.
Pract Radiat Oncol ; 5(6): 433-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26419444

RESUMO

PURPOSE: Precise radiation therapy for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast from 4-dimensional (4D) computed tomography, whereas 4D magnetic resonance imaging MRI (4DMRI) provides superior tissue discrimination. This work evaluates a novel 4DMRI algorithm for motion management in radiation therapy. METHODS AND MATERIALS: Respiratory-triggered, T2-weighted, single-shot 4DMRI was evaluated for an open 1.0T magnetic resonance simulation platform. An in-house programmable platform was devised that translated objects for a variety of breathing patterns. Coronal 4DMRIs were acquired to evaluate the impact of number of phases on excursion and scan time. The impact of breathing period and regularity on scan time was assessed. A novel clinical 4D prototype phantom was scanned to characterize excursion and absolute volume differences between phase acquisitions. Optimized parameters were applied to abdominal 4DMRIs of 5 volunteers and 2 abdominal cancer patients on an institutional review board-approved protocol. Duty cycle, scan time, and waveform analysis were evaluated. Maximum intensity projection datasets were analyzed. RESULTS: Two- to 5-fold acquisition time increase was measured for 10-phase versus 2-phase phantom experiments. Regular breathing patterns yielded higher duty cycles than irregular (48.5% and 35.9%, respectively, P < .001), whereas faster breathing rates yielded shorter 4DMRI acquisition times. Volumes of a hypodense target were underestimated 4% to 5% for 2 and 4 phases compared with 10 phases. Better agreement was obtained for 6- and 8-phase acquisitions (~3% different from 10 phase). Internal target volume centroids on minimum and maximum images across all phases were <2 mm different across all 10 phases, although slight target excursion variations (up to 4 mm) were observed. In humans, a strong negative association between breathing rate and acquisition time (Pearson's r = -0.68, P < .05) was observed. Eight-phase acquisition times ranged from 7 to 15 minutes, depending on the patient. CONCLUSION: 4DMRI has been optimized and implemented. Irregular breathing patterns and slow breathing rate adversely impacted 4DMRI efficiency; thus, interventions such as biofeedback may be desirable.


Assuntos
Neoplasias Abdominais/radioterapia , Tomografia Computadorizada Quadridimensional/normas , Imageamento por Ressonância Magnética/normas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/normas , Neoplasias Abdominais/secundário , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Estudos de Casos e Controles , Voluntários Saudáveis , Humanos , Movimento (Física) , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...