Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 12(2): e0172789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234964

RESUMO

Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy, limiting the long-term health benefits of intense glycemic control in type 1 and advanced type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral responses to glucose deprivation, a phenomenon known as hypoglycemia associated autonomic failure (HAAF). The molecular mechanisms leading to defective counter-regulation are not completely understood. We hypothesized that both neuronal (excessive cholinergic signaling between the splanchnic nerve fibers and the adrenal medulla) and humoral factors contribute to the impaired epinephrine production and release in HAAF. To gain further insight into the molecular mechanism(s) mediating the blunted epinephrine responses following recurrent hypoglycemia, we utilized a global gene expression profiling approach. We characterized the transcriptomes during recurrent (defective counter-regulation model) and acute hypoglycemia (normal counter-regulation group) in the adrenal medulla of normal Sprague-Dawley rats. Based on comparison analysis of differentially expressed genes, a set of unique genes that are activated only at specific time points after recurrent hypoglycemia were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network indicated activation of the unfolded protein response. Furthermore, at least three additional pathways/interaction networks altered in the adrenal medulla following recurrent hypoglycemia were identified, which may contribute to the impaired epinephrine secretion in HAAF: greatly increased neuropeptide signaling (proenkephalin, neuropeptide Y, galanin); altered ion homeostasis (Na+, K+, Ca2+) and downregulation of genes involved in Ca2+-dependent exocytosis of secretory vesicles. Given the pleiotropic effects of the unfolded protein response in different organs, involved in maintaining glucose homeostasis, these findings uncover broader general mechanisms that arise following recurrent hypoglycemia which may afford clinicians an opportunity to modulate the magnitude of HAAF syndrome.


Assuntos
Diabetes Mellitus/genética , Regulação da Expressão Gênica/genética , Hipoglicemia/genética , Insulina/metabolismo , Animais , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Glicemia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Epinefrina/genética , Epinefrina/metabolismo , Perfilação da Expressão Gênica/métodos , Genoma , Glucose/metabolismo , Humanos , Hipoglicemia/patologia , Ratos , Resposta a Proteínas não Dobradas/genética
3.
Physiol Rep ; 3(2)2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25713330

RESUMO

Acute metabolic stress such as insulin-induced hypoglycemia triggers a counterregulatory response during which the release of catecholamines (epinephrine), the activation of tyrosine hydroxylase (TH) enzyme and subsequent compensatory catecholamine biosynthesis occur in the adrenal medulla. However, recurrent exposure to hypoglycemia (RH), a consequence of tight glycemic control in individuals with type 1 and type 2 diabetes compromises this physiological response. The molecular mechanisms underlying the maladaptive response to repeated glucose deprivation are incompletely understood. We hypothesize that impaired epinephrine release following RH reflects altered regulation of adrenal catecholamine biosynthesis. To test this hypothesis, we compared the effect of single daily (RH) and twice-daily episodes of insulin-induced hypoglycemia (2RH) on adrenal epinephrine release and production in normal rats. Control animals received saline injections under similar conditions (RS and 2RS, respectively). Following 3 days of treatment, we assessed the counterregulatory hormonal responses during a hypoglycemic clamp. Changes in adrenal TH gene expression were also analyzed. The counterregulatory responses, relative TH transcription and TH mRNA levels and Ser40-TH phosphorylation (marker for enzyme activation) were induced to a similar extent in RS, 2RS, and RH groups. In contrast, epinephrine and glucagon responses were attenuated in the 2RH group and this was associated with a limited elevation of adrenal TH mRNA, rapid inactivation of TH enzyme and no significant changes in TH protein. Our results suggest that novel posttranscriptional mechanisms controlling TH mRNA and activated TH enzyme turnover contribute to the impaired epinephrine responses and may provide new therapeutic targets to prevent HAAF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...