Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neurol Sci ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520638

RESUMO

OBJECTIVE: Type 2 diabetes mellitus (T2DM) is a risk factor for cognitive impairment, and reduced heart rate variability (HRV) has been correlated with cognitive impairment in elderly individuals. This study investigated risk factors and validated a predictive model for mild cognitive impairment (MCI) in patients with T2DM using an autonomic function test. METHODS: Patients with T2DM, 50-85 years of age, who attended the diabetes clinic at Gyeongsang National University Hospital between March 2018 and December 2019, were included. A total of 201 patients had been screened; we enrolled 124 patients according to the inclusion and exclusion criteria in this study. Cognitive function was assessed using the Montreal Cognitive Assessment-Korean version (MOCA-K); MCI was defined as a total MOCA-K score ≤ 23. Risk factors for MCI in patients with T2DM, including demographic- and diabetes-related factors, and autonomic function test results, were analyzed. Based on multivariate logistic regression, a nomogram was developed as a prediction model for MCI. RESULTS: Thirty-nine of 124 patients were diagnosed with MCI. Age, education, and decreased cardiovagal function were associated with a high risk for MCI, with cardiovagal function exerting the greatest influence. However, diabetes-related factors, such as glycemic control, duration of diabetes, or medications, were not associated with the risk for MCI. The nomogram demonstrated excellent discrimination (area under the curve, 0.832) and was well calibrated. CONCLUSION: Approximately one-third of patients had MCI; as such, carefully evaluating cognitive function in elderly T2DM patients with reduced HRV is important to prevent progression to dementia.

2.
J Peripher Nerv Syst ; 29(1): 82-87, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286033

RESUMO

BACKGROUND AND AIMS: Scrub typhus is an endemic disease in the fall season that occurs in a limited number of places known as the Tsutsugamushi Triangle. Peripheral neuropathy is a common complication of scrub typhus. Herein, we encountered several patients with ascending paralysis after scrub typhus infection, who were diagnosed with Guillain-Barré syndrome (GBS). We aimed to investigate the clinical and laboratory characteristics of patients who developed GBS after scrub typhus. METHODS: Patients were retrospectively recruited from six nationwide tertiary centers in South Korea from January 2017 to December 2021. Patients who had been clinically diagnosed with GBS and confirmed to have scrub typhus via laboratory examination and/or the presence of an eschar before the onset of acute limb paralysis were included. The GBS-associated clinical and electrophysiological characteristics, outcomes, and scrub typhus-associated features were collected. RESULTS: Of the seven enrolled patients, six were female and one was male. The median time from scrub typhus infection to the onset of limb weakness was 6 (range: 2-14) days. All patients had eschar on their bodies. Four patients (57.1%) were admitted to the intensive care unit and received artificial ventilation for respiratory distress. At 6 months, the median GBS disability score was 2 (range, 1-4) points. INTERPRETATION: Patients with scrub typhus-associated GBS have a severe clinical presentation and require intensive treatment with additional immunotherapies. Therefore, GBS should be included in the differential diagnosis when peripheral neuropathies develop during scrub typhus treatment. Notably, scrub typhus is associated to GBS.


Assuntos
Síndrome de Guillain-Barré , Orientia tsutsugamushi , Doenças do Sistema Nervoso Periférico , Tifo por Ácaros , Humanos , Masculino , Feminino , Tifo por Ácaros/complicações , Tifo por Ácaros/diagnóstico , Tifo por Ácaros/epidemiologia , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/complicações , Estudos Retrospectivos , Doenças do Sistema Nervoso Periférico/complicações , Paralisia
3.
ACS Appl Mater Interfaces ; 16(3): 3778-3785, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268146

RESUMO

Although recent dramatic advances in power conversion efficiencies (PCEs) have resulted in values over 19%, the poor photostability of organic photovoltaics (OPVs) has been a serious bottleneck to their commercialization. The photocatalytic effect, which is caused by incident ultraviolet-A (UV-A, 320-400 nm) light in the most commonly used zinc oxide (ZnOX) electron transport layer (ETL), significantly deteriorates the photostability of OPVs. In this work, we develop a new and facile method to enhance the photostability of nonfullerene acceptor-based OPVs by introducing UV-A-insensitive titanium suboxide (TiOX) ETL. Through an in-depth analysis of mass information at the interface between the ETL and photoactive layer, we confirm that the UV-A-insensitive TiOX suppresses the photocatalytic effect. The resulting device employing the TiOX ETL shows excellent photostability, obtaining 80% of the initial PCE for up to 200 h under 1 sun illumination, which is 10 times longer than that of the conventional ZnOX system (19 h).

5.
Mult Scler Relat Disord ; 79: 104957, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688927

RESUMO

BACKGROUND: Serum levels of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) reflect the disease activity and disability in central nervous system (CNS) demyelinating diseases. However, the clinical significance of NfL and GFAP in idiopathic transverse myelitis (iTM), an inflammatory spinal cord disease with unknown underlying causes, remains unclear. This study aimed to investigate NfL and GFAP levels in iTM and their association with the clinical parameters compared with those in TM with disease-specific antibodies such as anti-aquaporin 4 or myelin oligodendrocyte glycoprotein antibodies (sTM). METHODS: We collected serum and clinical data of 365 patients with CNS inflammatory diseases from 12 hospitals. The serum NfL and GFAP levels were measured in patients with iTM (n = 37) and sTM (n = 39) using ultrasensitive single-molecule array assays. Regression analysis was performed to investigate the associations between serum levels of NfL and GFAP and the clinical parameters such as higher EDSS scores (EDSS ≥ 4.0). RESULTS: Mean NfL levels were not significantly different between iTM (50.29 pg/ml) and sTM (63.18 pg/ml) (p = 0.824). GFAP levels were significantly lower in iTM (112.34 pg/ml) than in sTM (3814.20 pg/ml) (p = 0.006). NfL levels correlated with expanded disability status scale (EDSS) scores in sTM (p = 0.001) but not in iTM (p = 0.824). Disease duration also correlated with higher EDSS scores in sTM (p = 0.017). CONCLUSION: NfL levels and disease duration correlated with EDSS scores in sTM, and GFAP levels could be a promising biomarker to differentiate iTM from sTM.


Assuntos
Esclerose Múltipla , Mielite Transversa , Humanos , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Aquaporina 4
6.
ACS Appl Mater Interfaces ; 15(36): 42802-42810, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652403

RESUMO

The tailoring of the average photopic transmittance (APT) of transparent organic solar cells (T-OSCs) has been the greatest challenge in building-integrated photovoltaic applications for future smart solar windows to regulate indoor brightness, maintain a human circadian rhythm, and positively impact human emotions by allowing the observation of the external environment. However, a notorious trade-off exists between the APT and power conversion efficiency (PCE) of T-OSCs, mainly due to the absence of highly conductive and transparent top electrodes, which are a key building block determining the PCE and APT. Herein, we demonstrate a new tungsten oxide (WO3)-based multilayer as a highly conductive and transparent top electrode that provides an excellent APT while maintaining a high PCE in T-OSCs. With the assistance of optical simulation based on a transfer matrix method to calculate the optimum thicknesses of the multilayer electrodes, we achieve the best-performing T-OSC with a PCE of 7.0% and a full device APT of 46.7%, resulting in a high light utilization efficiency of 3.27%, which is superior to that of T-OSCs based on the same photoactive system. Furthermore, superior thermal stability at 85 °C in an N2 atmosphere is observed in WO3-based T-OSCs, maintaining 98% of the initial PCE after about 231 h. Our findings provide new insights into the development of T-OSCs with high efficiency and transparency.

8.
Adv Mater ; 35(31): e2302143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099626

RESUMO

Solar cells (PSCs) with quasi-2D Ruddlesden-Popper perovskites (RPP) exhibit greater environmental stability than 3D perovskites; however, the low power conversion efficiency (PCE) caused by anisotropic crystal orientations and defect sites in the bulk RPP materials limit future commercialization. Herein, a simple post-treatment is reported for the top surfaces of RPP thin films (RPP composition of PEA2 MA4 Pb5 I16 = 5) in which zwitterionic n-tert-butyl-α-phenylnitrone (PBN) is used as the passivation material. The PBN molecules passivate the surface and grain boundary defects in the RPP and simultaneously induce vertical direction crystal orientations of the RPPs, which lead to efficient charge transport in the RPP photoactive materials. With this surface engineering methodology, the optimized devices exhibit a remarkably enhanced PCE of 20.05% as compared with the devices without PBN (≈17.53%) and excellent long-term operational stability with 88% retention of the initial PCE under continuous 1-sun irradiation for over 1000 h. The proposed passivation strategy provides new insights into the development of efficient and stable RPP-based PSCs.

9.
Adv Sci (Weinh) ; 10(17): e2206802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097705

RESUMO

Herein, a new ternary strategy to fabricate efficient and photostable inverted organic photovoltaics (OPVs) is introduced by combining a bulk heterojunction (BHJ) blend and a fullerene self-assembled monolayer (C60 -SAM). Time-of-flight secondary-ion mass spectrometry - analysis reveals that the ternary blend is vertically phase separated with the C60 -SAM at the bottom and the BHJ on top. The average power conversion efficiency - of OPVs based on the ternary system is improved from 14.9% to 15.6% by C60 -SAM addition, mostly due to increased current density (Jsc ) and fill factor -. It is found that the C60 -SAM encourages the BHJ to make more face-on molecular orientation because grazing incidence wide-angle X-ray scattering - data show an increased face-on/edge-on orientation ratio in the ternary blend. Light-intensity dependent Jsc data and charge carrier lifetime analysis indicate suppressed bimolecular recombination and a longer charge carrier lifetime in the ternary system, resulting in the enhancement of OPV performance. Moreover, it is demonstrated that device photostability in the ternary blend is enhanced due to the vertically self-assembled C60 -SAM that successfully passivates the ZnO surface and protects BHJ layer from the UV-induced photocatalytic reactions of the ZnO. These results suggest a new perspective to improve both performance and photostability of OPVs using a facial ternary method.

10.
IEEE Access ; 10: 58071-58080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339794

RESUMO

Neurons in the brain are complex machines with distinct functional compartments that interact nonlinearly. In contrast, neurons in artificial neural networks abstract away this complexity, typically down to a scalar activation function of a weighted sum of inputs. Here we emulate more biologically realistic neurons by learning canonical activation functions with two input arguments, analogous to basal and apical dendrites. We use a network-in-network architecture where each neuron is modeled as a multilayer perceptron with two inputs and a single output. This inner perceptron is shared by all units in the outer network. Remarkably, the resultant nonlinearities often produce soft XOR functions, consistent with recent experimental observations about interactions between inputs in human cortical neurons. When hyperparameters are optimized, networks with these nonlinearities learn faster and perform better than conventional ReLU nonlinearities with matched parameter counts, and they are more robust to natural and adversarial perturbations.

11.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364440

RESUMO

Herein, we design and characterize 9-heterocyclic ring non-fullerene acceptors (NFAs) with the extended backbone of indacenodithiophene by cyclopenta [2,1-b:3,4-b'] dithiophene (CPDT). The planar conjugated CPDT donor enhances absorption by reducing vibronic transition and charge transport. Developed NFAs with different end groups shows maximum absorption at approximately 790-850 nm in film. Because of the electronegative nature of the end-group, the corresponding acceptors showed deeper LUMO energy levels and red-shifted ultraviolet absorption. We investigate the crystallinity, film morphology, surface energy, and electronic as well as photovoltaic performance. The organic photovoltaic cells using novel NFAs with the halogen end groups fluorine or chlorine demonstrate better charge collection and faster exciton dissociation than photovoltaic cells using NFAs with methyl or lacking a substituent. Photovoltaic devices constructed from m-Me-ITIC with various end groups deliver power conversion efficiencies of 3.6-11.8%.

12.
Adv Mater ; 34(41): e2205268, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030364

RESUMO

Suppressing nonradiative recombination at the interface between the organometal halide perovskite (PVK) and the charge-transport layer (CTL) is crucial for improving the efficiency and stability of PVK-based solar cells (PSCs). Here, a new bathocuproine (BCP)-based nonconjugated polyelectrolyte (poly-BCP) is synthesized and this is introduced as a "dual-side passivation layer" between the tin oxide (SnO2 ) CTL and the PVK absorber. Poly-BCP significantly suppresses both bulk and interfacial nonradiative recombination by passivating oxygen-vacancy defects from the SnO2 side and simultaneously scavenges ionic defects from the other (PVK) side. Therefore, PSCs with poly-BCP exhibits a high power conversion efficiency (PCE) of 24.4% and a high open-circuit voltage of 1.21 V with a reduced voltage loss (PVK bandgap of 1.56 eV). The non-encapsulated PSCs also show excellent long-term stability by retaining 93% of the initial PCE after 700 h under continuous 1-sun irradiation in nitrogen atmosphere conditions.

13.
BMC Bioinformatics ; 23(1): 187, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581558

RESUMO

The rapid global spread and dissemination of SARS-CoV-2 has provided the virus with numerous opportunities to develop several variants. Thus, it is critical to determine the degree of the variations and in which part of the virus those variations occurred. Therefore, in this study, methods that could be used to vectorize the sequence data, perform clustering analysis, and visualize the results were proposed using machine learning methods. To conduct this study, a total of 224,073 cases of SARS-CoV-2 sequence data were collected through NCBI and GISAID, and the data were visualized using dimensionality reduction and clustering analysis models such as T-SNE and DBSCAN. The SARS-CoV-2 virus, which was first detected, was distinguished from different variations, including Omicron and Delta, in the cluster results. Furthermore, it was possible to examine which codon changes in the spike protein caused the variants to be distinguished using feature importance extraction models such as Random Forest or Shapely Value. The proposed method has the advantage of being able to analyse and visualize a large amount of data at once compared to the existing tree-based sequence data analysis. The proposed method was able to identify and visualize significant changes between the SARS-CoV-2 virus, which was first detected in Wuhan, China, in December 2019, and the newly formed mutant virus group. As a result of clustering analysis using sequence data, it was possible to confirm the formation of clusters among various variants in a two-dimensional graph, and by extracting the importance of variables, it was possible to confirm which codon changes played a major role in distinguishing variants. Furthermore, since the proposed method can handle a variety of data sequences, it can be used for all kinds of diseases, including influenza and SARS-CoV-2. Therefore, the proposed method has the potential to become widely used for the effective analysis of disease variations.


Assuntos
COVID-19 , Magnoliopsida , Análise por Conglomerados , Códon , Aprendizado de Máquina , SARS-CoV-2/genética
14.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630731

RESUMO

The saponins of Bupleurum falcatum L., saikosaponins, are the major components responsible for its pharmacological and biological activities. However, the anti-cancer effects of prosaikogenin and saikogenin, which are glycoside hydrolyzed saikosaponins, are still unknown due to its rarity in plants. In this study, we applied two recombinant glycoside hydrolases that exhibit glycoside cleavage activity with saikosaponins. The two enzymes, BglPm and BglLk, were cloned from Paenibacillus mucilaginosus and Lactobacillus koreensis, and exhibited good activity between 30-37 °C and pH 6.5-7.0. Saikosaponin A and D were purified and obtained from the crude B. falcatum L. extract using preparative high performance liquid chromatography technique. Saikosaponin A and D were converted into saikogenin F via prosaikogenin F, and saikogenin G via prosaikogenin G using enzyme transformation with high ß-glycosidase activity. The two saikogenin and two prosaikogenin compounds were purified using a silica column to obtain 78.1, 62.4, 8.3, and 7.5 mg of prosaikogenin F, prosaikogenin G, saikogenin F, and saikogenin G, respectively, each with 98% purity. The anti-cancer effect of the six highly purified saikosaponins was investigated in the human colon cancer cell line HCT 116. The results suggested that saikosaponins and prosaikogenins markedly inhibit the growth of the cancer cell line. Thus, this enzymatic technology could significantly improve the production of saponin metabolites of B. falcatum L.


Assuntos
Sapogeninas , Saponinas , Humanos , Hidrólise , Ácido Oleanólico/análogos & derivados , Sapogeninas/química , Sapogeninas/farmacologia , Saponinas/química , Saponinas/farmacologia
15.
Neuropediatrics ; 53(5): 338-343, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35436784

RESUMO

BACKGROUND: Reflex and spontaneous movements are not uncommon in brain death patients. However, most studies have been conducted in adults, while reports in infants and children are rare. Thus, we aimed to evaluate the frequency and characteristics of these movements in pediatric patients declared as brain death. METHODS: Records of pediatric patients who were diagnosed as brain death from 15 hospitals in the Yeongnam region, South Korea, between January 2013 and September 2016 were analyzed. All body movements in patients who met the criteria for brain death as established by the Korea Medical Association were assessed by medical doctors and trained organ transplant coordinators. The frequency and characteristics of these movements were identified. Additionally, the demographic and clinical factors of the brain death patients with and without these movements were compared. RESULTS: A total of 31 patients who met the criteria for brain death were enrolled. Seven patients (22.6%) showed either reflex or spontaneous movements; six of them (85.7%) showed reflex movements only, and one patient (14.3%) showed both types of movements. The most common types of reflex movements were the flexor/extensor plantar response and isolated finger jerk. Four of seven patients (57.1%) showed a single movement pattern, while three (42.9%) showed two different movement patterns. CONCLUSION: It is essential for physicians who perform pediatric brain death examinations to recognize the frequency and characteristics of reflex and spontaneous movements, and this article may help in the accurate and prompt diagnosis of brain death.


Assuntos
Morte Encefálica , Reflexo , Adulto , Encéfalo , Morte Encefálica/diagnóstico , Criança , Cabeça , Humanos , Lactente , Movimento/fisiologia , Reflexo/fisiologia
16.
ACS Appl Mater Interfaces ; 13(36): 43505-43515, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472327

RESUMO

Additive engineering is emerging as a powerful strategy to further enhance the performance of perovskite solar cells (PSCs), with the incorporation of bulky cations and amino acid (AA) derivatives being shown as a promising strategy for enhanced device stability. However, the incorporation of such additives typically results in photocurrent losses owing to their saturated carbon backbones, hindering charge transport and collection. Here, we investigate the use of AAs with varying carbon chain lengths as zwitterionic additives to enhance the PSC device stability, in air and nitrogen, under illumination. We, however, discovered that the device stability is insensitive to the chain length as the anticipated photocurrent drops as the chain length increases. Using glycine as an additive results in an improvement in the open circuit voltage from 1.10 to 1.14 V and a resulting power conversion efficiency of 20.2% (20.1% stabilized). Using time-of-flight secondary ion mass spectrometry, we confirm that the AAs reside at the surfaces and interfaces of our perovskite films and propose the mechanisms by which stability is enhanced. We highlight this with glycine as an additive, whereby an 8-fold increase in the device lifetime in ambient air at 1 sun illumination is recorded. Short-circuit photoluminescence quenching of complete devices is reported, which reveals that the loss in photocurrent density observed with longer carbon chain AAs results from the inefficient charge extraction from the perovskite absorber layer. These combined results demonstrate new fundamental understandings about the photophysical processes of additive engineering using AAs and provide a significant step forward in improving the stability of high-performance PSCs.

17.
Front Immunol ; 12: 677041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394078

RESUMO

Background: Clear associations have been found between vitamin D deficiency and several autoimmune diseases including multiple sclerosis (MS). However, the benefits of vitamin D supplementation on disease management remain a matter of debate. Objective and Methods: Patients with MS (N=12) and neuromyelitis optica spectrum disorder (NMOSD; N=12) were enrolled along with 15 healthy controls. Changes in lymphocyte subset proportions during stimulation of their peripheral blood mononuclear cells (PBMCs) with the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and correlations with serum concentrations of the vitamin D precursor 25-hydroxyvitamin D3 (serum 25(OH)D3) were explored. The impact of 1,25(OH)2D3 stimulation on the expression of vitamin-D-responsive genes in immune cells was also investigated. Results: In both MS and NMOSD, stimulation of PBMCs with 1,25(OH)2D3 followed by steroid suppressed the proliferation of total lymphocytes and T cells. The ratio of CD19+CD27+ memory B cells (Bmem) to all B cells after stimulation with 1,25(OH)2D3 was negatively correlated with serum 25(OH)D3 in MS (Spearman's ρ=-0.594, p=0.042), but positively correlated in NMOSD (Pearson's r = 0.739, p=0.006). However, there was no relationship between the ratio of Bmem to CD19+CD24+CD38+ regulatory B cells and serum 25(OH)D3 in either MS or NMOSD. In addition, the level of 1,25(OH)2D3-induced CYP24A1 mRNA expression in PBMCs was significantly and negatively correlated with serum 25(OH)D3 (for ΔCT, r=0.744, p=0.014) in MS. Conclusion: These findings suggest a beneficial impact of stimulation of PBMCs with vitamin D followed by steroid on the T-cell population. The association between patient serum 25(OH)D3 and the proportion of Bmem under immune-cell stimulation differed between MS and NMOSD. Further investigations are warranted with larger patient populations.


Assuntos
Linfócitos B/efeitos dos fármacos , Calcifediol/sangue , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Esclerose Múltipla/sangue , Neuromielite Óptica/sangue , Linfócitos T/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitaminas/farmacologia , Adulto , Linfócitos B/imunologia , Estudos de Casos e Controles , Células Cultivadas , Suplementos Nutricionais , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Vitamina D/farmacologia
18.
Micromachines (Basel) ; 12(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203175

RESUMO

In this paper, a spectrometer design enabling an ultrathin form factor is proposed. Local strain engineering in group III-nitride semiconductor nanostructured light-absorbing elements enables the integration of a large number of photodetectors on the chip exhibiting different absorption cut-off wavelengths. The introduction of a simple cone-shaped back-reflector at the bottom side of the substrate enables a high light-harvesting efficiency design, which also improves the accuracy of spectral reconstruction. The cone-shaped back-reflector can be readily fabricated using mature patterned sapphire substrate processes. Our design was validated via numerical simulations with experimentally measured photodetector responsivities as the input. A light-harvesting efficiency as high as 60% was achieved with five InGaN/GaN multiple quantum wells for the visible wavelengths.

19.
Nanoscale ; 13(11): 5652-5659, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33710224

RESUMO

A simpler and less expensive fabrication process is one of the essential demands for the commercialization of perovskite solar cells (PeSCs). Especially, inverted PeSCs (I-PeSCs) require a cathode buffer layer (CBL) for fabricating highly efficient and stable PeSCs. However, this increases the number of fabrication step. Here, we demonstrate highly stable and efficient cathode-buffer-layer-free I-PeSCs via additive engineering on an ETL, which is based on phenyl-C61-butyric acid methyl ester (PC61BM) with a small amount of poly(methyl methacrylate) (PMMA). This modified ETL shows not only a simplified fabrication process but also effective extraction of charge from the perovskite to a high work function copper electrode (Cu) by formation of an interfacial dipole at the interfaces between the ETL and the Cu. Additionally, it exhibits good passivation of the trap density existing along the grain boundaries and surface of the perovskite layer, reducing the non-radiative recombination and consistent with the increases in open-circuit voltage (Voc). As a result, I-PeSCs with a blend PC61BM : PMMA ETL demonstrate an enhancement in the power conversion efficiency (PCE) from 13.55% (without PMMA) to 18.38%. Furthermore, they exhibit both burn-in-free behaviour in photostability measurements by maximum power-point tracking (MPPT) method and long-term air-stability (30 days for T90) in ambient air. Lastly, we obtained PCE of 15.03% and 16.83% for large-area (1 cm2) I-PeSCs with PC61BM and PC61BM : PMMA, respectively. This method provides an alternative route to reduce the fabrication time and budget for commercialization of I-PeSCs without sacrificing device performance.

20.
Sci Rep ; 11(1): 4413, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627706

RESUMO

When a newly emerging infectious disease breaks out in a country, it brings critical damage to both human health conditions and the national economy. For this reason, apprehending which disease will newly emerge, and preparing countermeasures for that disease, are required. Many different types of infectious diseases are emerging and threatening global human health conditions. For this reason, the detection of emerging infectious disease pattern is critical. However, as the epidemic spread of infectious disease occurs sporadically and rapidly, it is not easy to predict whether an infectious disease will emerge or not. Furthermore, accumulating data related to a specific infectious disease is not easy. For these reasons, finding useful data and building a prediction model with these data is required. The Internet press releases numerous articles every day that rapidly reflect currently pending issues. Thus, in this research, we accumulated Internet articles from Medisys that were related to infectious disease, to see if news data could be used to predict infectious disease outbreak. Articles related to infectious disease from January to December 2019 were collected. In this study, we evaluated if newly emerging infectious diseases could be detected using the news article data. Support Vector Machine (SVM), Semi-supervised Learning (SSL), and Deep Neural Network (DNN) were used for prediction to examine the use of information embedded in the web articles: and to detect the pattern of emerging infectious disease.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Meios de Comunicação de Massa/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...