Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676487

RESUMO

The retrofitting of existing RC slabs with an innovative system comprising FRP and HPC has been demonstrated to be effective in strengthening and overcoming the logistical challenges of installation. Nonetheless, the excessive improvement of flexural strength over shear strength would cause the sudden failure of rehabilitated flexural members. The literature has previously recommended failure limits to determine the additional moment strength compared with the shear strength to prevent brittle shear failure of strengthened, continuous RC slabs. This study suggests a design process for preventing shear failure and inducing the ductile-failure mode to improve the safety and applicability of retrofitted RC slabs based on the proposed failure limits. The effectiveness of the procedure in brittle-failure prevention for the end and interior spans of retrofitted RC slabs is illustrated via a case study. The outcomes showed that the retrofit system with 0.53-mm-thick-CFRP prevented brittle failure and significantly enhanced the design-factored load and ultimate failure load by up to 2.07 times and 2.13 times, respectively.

2.
Materials (Basel) ; 15(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499927

RESUMO

An innovative retrofit system consisting of fiber-reinforced polymers (FRP) and high-performance concrete (HPC) considering the difficulty of the accessibility and installation of FRP on the underside of reinforced concrete (RC) slabs was found to be efficient in the flexural strengthening of existing RC slabs. It is important to note that continuous slabs using the FRP-HPC retrofit systems are less effective in exploiting FRP tensile strength and can cause sudden failure once excessively enhanced flexural strength exceeds shear strength. A design method to ensure ductile failure mode was also proposed for strengthened continuous RC slabs in the previous literature. Thus, it is necessary to optimize retrofit systems in terms of mechanical performance aspects to improve the efficiency of retrofitted slabs in serviceability. This study proposes a design method for optimizing the strength of materials and inducing ductile failure of continuous slab retrofitting FRP-HPC systems. The proposed approach demonstrated its effectiveness for strengthening a continuous RC slab with various FRP-HPC retrofit systems through a case study. The results show that the design factored load in the serviceability limit state does not change appreciably from a decrease in carbon fiber-reinforced polymers (CFRP) of 38%; the design factored load decreased only by 9% and the ultimate failure load by 13% while reducing CFRP by 20% and HPC by 25%.

3.
Materials (Basel) ; 15(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363046

RESUMO

The hybrid retrofit system using FRP and concrete overlay applied on the top of slabs has proven effective in strengthening and overcoming logistical constraints, compared with conventional strengthening techniques using externally bonded composite materials to the underside of the slabs. Nevertheless, the performance of retrofitted slabs is governed by debonding failure due to the low bond strength between CFRP and concrete overlay. Thus, this study investigates the behavior of flexural strengthened slabs with FRP retrofit systems and the effect of bond-slip laws on debonding failure. Firstly, two full-scale RC slabs with and without a retrofit system were tested in a four-point bending setup as the control specimens. Then, the same retrofitted slab was simulated by utilizing the commercial program ABAQUS. A sensitivity analysis was conducted to consider the influence of bond-slip laws to predict the failure mechanism of the retrofitted slabs based on load-deflection relationships. The results showed that the strengthened slab enhanced the load-carrying capacity by 59%, stiffness by 111%, and toughness by 29%. The initial stiffness of 0.1K0 and maximum shear stress of 0.13τmax, compared with the corresponding values of Neubauer's and Rostasy's bond-slip law, can be used to simulate the global response of the retrofitted slab validated by experiment results.

4.
Materials (Basel) ; 15(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234352

RESUMO

In this study, a modified version of electrospun nylon 66 nanofibers by silica particles were blended into ordinary Portland cement to investigate the microstructure and some mechanical properties of cementitious material. The addition of silica into the nanofibers improved the tensile and compressive properties of the hardened cement pastes. The observations from the mechanical strength tests showed an increase of 41%, 33% and 65% in tensile strength, compressive strength, and toughness, respectively, when modifying the cement pastes with the proposed nanofibers. The observations from scanning electron microscopy and transmission electron microscopy showed the morphology and microstructure of the fibers as well as their behaviors inside the cement matrix. Additionally, X-ray diffraction and thermal gravimetric analysis clarified the occurrence of the extra pozzolanic reaction, as well as the calcium hydroxide consumption by the attached silica inside the cement matrix. Finally, the observations from this study showed the successful fabrication of the modified nanofibers and the feasibility of improving the tensile and compressive behaviors of cement pastes using the proposed electrospun nanofibers.

5.
Materials (Basel) ; 14(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885538

RESUMO

In this study, we estimate the potential efficiency of waste fishing net (WFN) fibers as concrete reinforcements. Three WFN fiber concentrations (1, 2, and 3% by volume) were mixed with concrete. Compressive strength, toughness, splitting tensile strength, and biaxial flexural tests were conducted. Compressive strength decreased but other properties increased as a function of fiber proportions. According to the mechanical strength observations and the ductility number, WFN fibers yielded benefits in crack arresting that improved the postcracking behavior and transformed concrete from a brittle into a quasi-brittle material. It is inferred that WFN fiber is a recycled and eco-friendly material that can be utilized as potential concrete reinforcement.

6.
Materials (Basel) ; 14(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947244

RESUMO

Strengthening existing reinforced concrete (RC) slabs using externally bonded materials is increasingly popular due to its adaptability and versatility. Nevertheless, ductility reduction of the rehabilitated flexural members with these materials can lead to brittle shear failure. Therefore, a new approach for strengthening is necessary. This paper presents a methodology to induce ductile failure of flexural strengthened one-way RC slabs. Ultimate failure loads can be considered to develop the proposed design methodology. Different failure modes corresponding to ultimate failure loads for RC slabs are addressed. Flexural and shear failure regions of RC slabs can be established by considering the failure modes. The end span of the concrete slab is shown for a case study, and numerical examples are solved to prove the essentiality of this methodology.

7.
Materials (Basel) ; 14(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065738

RESUMO

This study presents an explosion-resistant hybrid system containing a steel slab and a carbon fiber-reinforced polymer (CFRP) frame. CFRP, which is a high-strength material, acts as an impact reflection part. Steel slab, which is a high-ductility material, plays a role as an impact energy absorption part. Based on the elastoplastic behavior of steel, a numerical model is proposed to simulate the dynamic responses of the hybrid system under the air pressure from an explosion. Based on this, a case study is conducted to analyze and identify the optimal design of the proposed hybrid system, which is subjected to an impact load condition. The observations from the case study show the optimal thicknesses of 8.2 and 7 mm for a steel slab and a ϕ100 mm CFRP pipe for the hybrid system, respectively. In addition, the ability of the proposed hybrid system to resist an uncertain explosion is demonstrated in the case study based on the reliability methodology.

8.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068428

RESUMO

The present study deals with tests on the energy absorption capacity and compressive strength of styrene-butadiene rubber (SBR) latex-modified cementitious materials. Different polymer-cement ratios (P/C) of 0, 5, 10, 15, and 20% were carried out with the Charpy impact test at 7, 14, and 28 days of curing. The observations showed an increase in the energy absorption capacity of the SBR latex-modified cement paste in correspondence with the increase in curing times, as well as the increase in the P/C ratios. The P/C ratio of 10% was the optimal ratio for observing the highest energy absorption capacity of the SBR latex-modified cement paste, with a 43% increase observed. In addition, a linear relationship between compressive strength and the energy absorption capacity at 28 days was proposed. Based on that, the energy absorption capacity of SBR latex-modified cement paste can be analyzed or predicted by the compressive strength results, regardless of the P/C ratios. Finally, the two-parameter Weibull distribution was proved to fit by the observation data from the Charpy impact test.

9.
Materials (Basel) ; 12(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618924

RESUMO

This study examined the influences of fiber geometry, inclination angle, and loading rate on the pullout behavior of multiple steel fibers in ultra-high-performance concrete (UHPC). For this, two different steel fiber types, i.e., straight (S-) and hooked (H-), four different inclination angles (0°-60°), and four different loading rates (0.018 mm/s to 1200 mm/s) were considered. Test results indicated that the pullout performance of S-fibers in UHPC was improved by increasing the loading rate. The highest maximum pullout load of the S-fiber was obtained at the inclination angle of 30° or 45°. The maximum pullout loads of H-fibers also increased with increases in the loading rate, while their slip capacities rather decreased. No specific inclination angle was identified in the case of H-fibers that caused the highest maximum pullout load. The H-fibers yielded higher average bond strengths than S-fibers, but similar or even smaller pullout energies under the impact loads. The aligned S-fiber in UHPC was most sensitive to the loading rate compared to the inclined S-fiber and aligned H-fiber. The rate sensitivity became moderate with the fiber inclination angle. Consequently, the aligned S-fiber was recommended to achieve the best energy absorption capacity and interfacial bond strength at various impact loads.

11.
Materials (Basel) ; 10(5)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28772822

RESUMO

Epoxidized natural rubber fibers (ERFs) are developed through one-step electrospinning and directly deposited into epoxy resins without collecting and distributing of fibers. The shape of ERFs shows rough surface due to different evaporation rate of solvent mixture consisting of chloroform and dichloromethane and the average diameter of ERFs is 6.2 µm. The increase of ERFs loading from 0 to 20 wt % into the epoxy resin increases the fracture strain significantly from 1.2% to 13% and toughness from 0.3 MPa to 1.9 MPa by a factor of 7. However, the tensile strength and Young's modulus decrease about 34% from 58 MPa to 34 MPa and from 1.4 GPa to 0.9 GPa, respectively. Due to the crosslinking reactions between oxirane groups of ERFs and amine groups in the resin, surface roughness and the high aspect ratio of ERFs, ERFs result in more effective toughening effect with the minimum loss of tensile properties in epoxy resins.

12.
Materials (Basel) ; 9(2)2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28787904

RESUMO

The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. In this study, Ordinary Portland Cement (OPC) was mixed with 1% and 3% nanosilica by weight to produce cement pastes with water to binder ratio (w/b) of 0.45. The specimens were cured for 7 days. 29Si nuclear magnetic resonance (NMR) experiments are conducted and conversion fraction of nanosilica is extracted. The results are compared with a solid-state kinetic model. It seems that pozzolanic reaction of nanosilica depends on the concentration of calcium hydroxide.

13.
ScientificWorldJournal ; 2014: 242806, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180197

RESUMO

A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.


Assuntos
Materiais de Construção/normas , Incêndios , Termodinâmica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...