Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Cancer Res ; 20(1): 139-149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635508

RESUMO

Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two most common subtypes of lung cancer. Here, to identify new, targetable molecular properties of both subtypes, we monitored changes in the levels of heme- and oxidative phosphorylation (OXPHOS)-related proteins during lung tumorigenesis. Heme is a central molecule for oxidative metabolism and ATP generation via OXPHOS. Notably, both lung ADC and SCC tumors can be induced in the genetically engineered KLLuc mouse model harboring the G12D Kras mutation and a conditional Lkb1 knockout. We found that the levels of the rate-limiting heme synthesis enzyme ALAS1 and uptake protein SLC48A1, along with OXPHOS complex subunits, progressively increased as lung tumorigenesis advanced. Our data demonstrated that elevated levels of heme- and OXPHOS-related proteins were associated with both ADC and SCC. Importantly, treatment of KLLuc mice with a heme-sequestering protein, HeSP2, that inhibits heme uptake in tumor cells effectively arrested lung tumor progression, and both ADC and SCC tumors were strongly suppressed. Additionally, HeSP2 effectively suppressed the growth of both SCC and ADC tumor xenografts in NOD/SCID mice. Further analyses indicated that HeSP2 effectively diminished OXPHOS in both ADC and SCC, reduced angiogenesis, alleviated tumor hypoxia, and suppressed cell proliferation. These results show that the advancing of lung tumorigenesis requires progressive increase in cellular heme synthesis and uptake, leading to intensified OXPHOS activity and ATP generation and promoting aggressive tumorigenic functions. IMPLICATIONS: Heme sequestration is an effective strategy for the suppression of both ADC and SCC tumor initiation and development.


Assuntos
Adenocarcinoma de Pulmão/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/sangue , Heme/metabolismo , Neoplasias Pulmonares/sangue , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
2.
Epidemiol Health ; 43: e2021024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872485

RESUMO

OBJECTIVES: A coronavirus disease 2019 (COVID-19) outbreak triggered by religious activities occurred in Daegu, Korea in February 2020. This outbreak spread rapidly to the community through high-risk groups. This study describes the characteristics of COVID-19 cases based on S religious group membership and summarizes the Daegu municipal government's processes and responses to control the outbreak. METHODS: The epidemiological characteristics of confirmed cases were obtained through basic and in-depth epidemiological surveys. General characteristics, the proportion of asymptomatic cases, the case-fatality rate, and the time-to-event within each group were presented after stratifying confirmed cases according to S religious group membership. RESULTS: Overall, 7,008 COVID-19 cases were confirmed in Daegu from February 18, 2020 to June 30, 2020, and 61.5% (n= 4,309) were S religious group members. Compared with non-members, members had a higher proportion of female (p< 0.001) and younger age (p< 0.001), as well as lower disease prevalence. At the time of the investigation, 38.4% of cases in members were asymptomatic versus 23.7% of cases in non-members (p< 0.001). The case-fatality rate of non-members aged ≥ 60 years was significantly higher than that of members (p< 0.001). Compared with non-members, members had longer intervals from symptom onset to diagnosis (p< 0.001) and from diagnosis to admission (p< 0.001), and a shorter interval from admission to discharge (p< 0.001). CONCLUSIONS: The epidemiological features of S religious group members, including the proportion of asymptomatic cases, case-fatality rate, and time-to-event, differed from non-members. The Daegu authorities prevented further COVID-19 spread through immediate isolation and active screening tests of all S religious group members.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Monitoramento Epidemiológico , Religião , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Adulto Jovem
3.
Cells ; 10(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803326

RESUMO

Squamous cell carcinomas (SCCs) arise from both stratified squamous and non-squamous epithelium of diverse anatomical sites and collectively represent one of the most frequent solid tumors, accounting for more than one million cancer deaths annually. Despite this prevalence, SCC patients have not fully benefited from recent advances in molecularly targeted therapy or immunotherapy. Rather, decades old platinum-based or radiation regimens retaining limited specificity to the unique characteristics of SCC remain first-line treatment options. Historically, a lack of a consolidated perspective on genetic aberrations driving oncogenic transformation and other such factors essential for SCC pathogenesis and intrinsic confounding cellular heterogeneity in SCC have contributed to a critical dearth in effective and specific therapies. However, emerging evidence characterizing the distinct genomic, epigenetic, and metabolic landscapes of SCC may be elucidating unifying features in a seemingly heterogeneous disease. In this review, by describing distinct metabolic alterations and genetic drivers of SCC revealed by recent studies, we aim to establish a conceptual framework for a previously unappreciated network of oncogenic signaling, redox perturbation, and metabolic reprogramming that may reveal targetable vulnerabilities at their intersection.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Estresse Oxidativo , Transdução de Sinais , Carcinoma de Células Escamosas/terapia , Humanos , Redes e Vias Metabólicas , Modelos Biológicos
4.
Oncogene ; 39(16): 3258-3275, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108165

RESUMO

Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma to drive its tumor suppressive effects-a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity. Treatment of KrasG12D/+;Trp53fl/fl mice with 5E1 and N-acetylcysteine, as a ROS scavenger, decreased tumor DNA damage, inhibited tumor growth and prolonged mouse survival. Thus, IHH induces stromal activation of the canonical Hh signaling pathway to suppress tumor growth and metastases, in part, by limiting ROS activity.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Proteínas Hedgehog/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Acetilcisteína/farmacologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Mutação/genética , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Cell Rep ; 28(7): 1860-1878.e9, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412252

RESUMO

Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Apoptose , Carcinoma de Células Escamosas/genética , Proliferação de Células , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Commun ; 10(1): 2824, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249305

RESUMO

The fibrogenic response in tissue-resident fibroblasts is determined by the balance between activation and repression signals from the tissue microenvironment. While the molecular pathways by which transforming growth factor-1 (TGF-ß1) activates pro-fibrogenic mechanisms have been extensively studied and are recognized critical during fibrosis development, the factors regulating TGF-ß1 signaling are poorly understood. Here we show that macrophage hypoxia signaling suppresses excessive fibrosis in a heart via oncostatin-m (OSM) secretion. During cardiac remodeling, Ly6Chi monocytes/macrophages accumulate in hypoxic areas through a hypoxia-inducible factor (HIF)-1α dependent manner and suppresses cardiac fibroblast activation. As an underlying molecular mechanism, we identify OSM, part of the interleukin 6 cytokine family, as a HIF-1α target gene, which directly inhibits the TGF-ß1 mediated activation of cardiac fibroblasts through extracellular signal-regulated kinase 1/2-dependent phosphorylation of the SMAD linker region. These results demonstrate that macrophage hypoxia signaling regulates fibroblast activation through OSM secretion in vivo.


Assuntos
Fibrose/metabolismo , Hipóxia/metabolismo , Macrófagos/metabolismo , Oncostatina M/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Hipóxia/genética , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oncostatina M/genética , Fosforilação , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
Front Immunol ; 10: 944, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134063

RESUMO

Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/imunologia , Complexo Piruvato Desidrogenase/imunologia , Acetilcoenzima A/imunologia , Acetilcoenzima A/metabolismo , Animais , Citosol/imunologia , Citosol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Resistência à Insulina/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/imunologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/deficiência , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/imunologia , Ácido Pirúvico/metabolismo
8.
J Ultrasound Med ; 38(5): 1259-1268, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30280391

RESUMO

OBJECTIVE: H-scan imaging is a new ultrasound technique used to visualize the relative size of acoustic scatterers. The purpose of this study was to evaluate the use of H-scan ultrasound imaging for monitoring early tumor response to neoadjuvant treatment using a preclinical breast cancer animal model. METHODS: Real-time H-scan ultrasound imaging was implemented on a programmable ultrasound scanner (Vantage 256; Verasonics Inc., Kirkland, WA) equipped with an L11-4v transducer. Bioluminescence and H-scan ultrasound was used to image luciferase-positive breast cancer-bearing mice at baseline and at 24, 48, and 168 hours after administration of a single dose of neoadjuvant (paclitaxel) or sham treatment. Animals were euthanized at 48 or 168 hours, and tumors underwent histologic processing to identify cancer cell proliferation and apoptosis. RESULTS: Baseline H-scan ultrasound images of control and therapy group tumors were comparable, but the latter exhibited significant changes over the 7-day study (P < .05). At termination, there was a marked difference between the H-scan ultrasound images of control and treated tumors (P < .05). Specifically, H-scan ultrasound images of treated tumors were more blue in hue than images obtained from control tumors. There was a significant linear correlation between the predominance of the blue hue found in the H-scan ultrasound images and intratumoral apoptotic activity (R2 > 0.40, P < .04). CONCLUSION: Preliminary preclinical results suggest that H-scan ultrasound imaging is a new and promising tissue characterization modality. H-scan ultrasound imaging may provide prognostic value when monitoring early tumor response to neoadjuvant treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante/métodos , Paclitaxel/uso terapêutico , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Imagens de Fantasmas , Resultado do Tratamento
9.
Ann Surg Oncol ; 25(11): 3396-3403, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30062472

RESUMO

BACKGROUND: This study was conducted to investigate whether polymorphisms of glucose transporter 1 (GLUT1) gene are associated with the prognosis of patients with non-small cell lung cancer (NSCLC) after surgical resection. METHODS: Five single nucleotide polymorphisms (SNPs) in GLUT1 were investigated in a total of 354 patients with NSCLC who underwent curative surgery. The association of the SNPs with patients' survival was analyzed. RESULTS: Among the five SNPs investigated, two SNPs (GLUT1 rs3820589T > A and rs4658G > C) were significantly associated with OS in multivariate analyses. GLUT1 rs3820589T > A was associated with significantly better OS (adjusted hazard ratio [aHR] = 0.57, 95% confidence interval [CI] = 0.34-0.94, P = 0.03, under dominant model), and rs4658G > C was associated with significantly worse OS (aHR = 1.91, 95% CI = 1.09-3.33, P = 0.02, under recessive model). In the stratified analysis by tumor histology, the effect of these SNPs on OS was only significant in squamous cell carcinoma but not in adenocarcinoma. When the two SNPs were combined, OS decreased as the number of bad genotypes increased (Ptrend = 4 × 10-3). CONCLUSIONS: This study suggests that genetic variation in GLUT1 may be useful in predicting survival of patients with early stage NSCLC.


Assuntos
Adenocarcinoma/patologia , Carcinoma de Células Grandes/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Transportador de Glucose Tipo 1/genética , Neoplasias Pulmonares/patologia , Polimorfismo de Nucleotídeo Único , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores Tumorais/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/terapia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Terapia Combinada , Feminino , Seguimentos , Genótipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Taxa de Sobrevida
10.
Oncol Res ; 26(1): 71-81, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28390113

RESUMO

Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.


Assuntos
Acetatos/metabolismo , Carcinoma Hepatocelular/metabolismo , Metabolismo Energético/fisiologia , Neoplasias Hepáticas/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Radioisótopos de Carbono , Carcinoma Hepatocelular/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Estudos Retrospectivos
11.
Biomol Ther (Seoul) ; 26(1): 4-9, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212301

RESUMO

Cancer metabolism as a field of research was founded almost 100 years ago by Otto Warburg, who described the propensity for cancers to convert glucose to lactate despite the presence of oxygen, which in yeast diminishes glycolytic metabolism known as the Pasteur effect. In the past 20 years, the resurgence of interest in cancer metabolism provided significant insights into processes involved in maintenance metabolism of non-proliferating cells and proliferative metabolism, which is regulated by proto-oncogenes and tumor suppressors in normal proliferating cells. In cancer cells, depending on the driving oncogenic event, metabolism is re-wired for nutrient import, redox homeostasis, protein quality control, and biosynthesis to support cell growth and division. In general, resting cells rely on oxidative metabolism, while proliferating cells rewire metabolism toward glycolysis, which favors many biosynthetic pathways for proliferation. Oncogenes such as MYC, BRAF, KRAS, and PI3K have been documented to rewire metabolism in favor of proliferation. These cell intrinsic mechanisms, however, are insufficient to drive tumorigenesis because immune surveillance continuously seeks to destroy neo-antigenic tumor cells. In this regard, evasion of cancer cells from immunity involves checkpoints that blunt cytotoxic T cells, which are also attenuated by the metabolic tumor microenvironment, which is rich in immuno-modulating metabolites such as lactate, 2-hydroxyglutarate, kynurenine, and the proton (low pH). As such, a full understanding of tumor metabolism requires an appreciation of the convergence of cancer cell intrinsic metabolism and that of the tumor microenvironment including stromal and immune cells.

12.
Biomol Ther (Seoul) ; 26(1): 10-18, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212302

RESUMO

Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

13.
Ultrasound Med Biol ; 44(1): 267-277, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29031985

RESUMO

H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Animais , Artefatos , Feminino , Camundongos , Camundongos Nus , Modelos Animais , Distribuição Normal , Imagens de Fantasmas , Razão Sinal-Ruído
14.
Am J Respir Cell Mol Biol ; 58(2): 216-231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915065

RESUMO

Hypoxia has long been implicated in the pathogenesis of fibrotic diseases. Aberrantly activated myofibroblasts are the primary pathological driver of fibrotic progression, yet how various microenvironmental influences, such as hypoxia, contribute to their sustained activation and differentiation is poorly understood. As a defining feature of hypoxia is its impact on cellular metabolism, we sought to investigate how hypoxia-induced metabolic reprogramming affects myofibroblast differentiation and fibrotic progression, and to test the preclinical efficacy of targeting glycolytic metabolism for the treatment of pulmonary fibrosis. Bleomycin-induced pulmonary fibrotic progression was evaluated in two independent, fibroblast-specific, promoter-driven, hypoxia-inducible factor (Hif) 1A knockout mouse models and in glycolytic inhibitor, dichloroacetate-treated mice. Genetic and pharmacological approaches were used to explicate the role of metabolic reprogramming in myofibroblast differentiation. Hypoxia significantly enhanced transforming growth factor-ß-induced myofibroblast differentiation through HIF-1α, whereas overexpression of the critical HIF-1α-mediated glycolytic switch, pyruvate dehydrogenase kinase 1 (PDK1) was sufficient to activate glycolysis and potentiate myofibroblast differentiation, even in the absence of HIF-1α. Inhibition of the HIF-1α/PDK1 axis by genomic deletion of Hif1A or pharmacological inhibition of PDK1 significantly attenuated bleomycin-induced pulmonary fibrosis. Our findings suggest that HIF-1α/PDK1-mediated glycolytic reprogramming is a critical metabolic alteration that acts to promote myofibroblast differentiation and fibrotic progression, and demonstrate that targeting glycolytic metabolism may prove to be a potential therapeutic strategy for the treatment of pulmonary fibrosis.


Assuntos
Hipóxia Celular/fisiologia , Ácido Dicloroacético/farmacologia , Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fibrose Pulmonar/patologia , Animais , Bleomicina , Linhagem Celular , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , RNA Interferente Pequeno/genética
15.
Mol Cell Oncol ; 4(5): e1364211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057314

RESUMO

Cancer cells consume high amounts of glucose for their cellular bioenergetic and anabolic requirements, relying on glucose to fuel their growth. We recently reported that lung squamous cell carcinoma, a major subtype of non-small cell lung cancer (NSCLC), exhibits remarkably elevated glucose transporter GLUT1 (encoded by SLC2A1) expression and glucose dependency, while another subtype of NSCLC, lung adenocarcinoma, shows significant glucose independence. Our findings highlight the metabolic heterogeneity of glucose metabolism among lung cancer subtypes, which can be exploited for targeted lung cancer therapies.

17.
Cancer Cell ; 32(1): 71-87.e7, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28697344

RESUMO

Poor response to cancer therapy due to resistance remains a clinical challenge. The present study establishes a widely prevalent mechanism of resistance to gemcitabine in pancreatic cancer, whereby increased glycolytic flux leads to glucose addiction in cancer cells and a corresponding increase in pyrimidine biosynthesis to enhance the intrinsic levels of deoxycytidine triphosphate (dCTP). Increased levels of dCTP diminish the effective levels of gemcitabine through molecular competition. We also demonstrate that MUC1-regulated stabilization of hypoxia inducible factor-1α (HIF-1α) mediates such metabolic reprogramming. Targeting HIF-1α or de novo pyrimidine biosynthesis, in combination with gemcitabine, strongly diminishes tumor burden. Finally, reduced expression of TKT and CTPS, which regulate flux into pyrimidine biosynthesis, correlates with better prognosis in pancreatic cancer patients on fluoropyrimidine analogs.


Assuntos
Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mucina-1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Carbono/metabolismo , Desoxicitidina/uso terapêutico , Digoxina/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Via de Pentose Fosfato , Prognóstico , Pirimidinas/biossíntese , Transdução de Sinais , Gencitabina
18.
Nat Commun ; 8: 15503, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548087

RESUMO

Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high 18F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Estudos de Coortes , Desoxiglucose/farmacologia , Feminino , Fluordesoxiglucose F18/administração & dosagem , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Hidroxibenzoatos/farmacologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fenótipo , Tomografia por Emissão de Pósitrons , Prognóstico , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Clin Exp Metastasis ; 34(3-4): 251-260, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28429188

RESUMO

Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer mortality worldwide. Several studies have investigated the relationship between 18F-fluorodeoxyglucose (18F-FDG) uptake on positron emission tomography and the prognosis of patients with HCC, although the relationship between 18F-FDG uptake and expression of EMT-related proteins in these patients remains unclear. We retrospectively enrolled 116 patients with HCC treated by curative surgical resection and who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) for preoperative staging. The relationship between the tumor-to-liver standardized uptake value ratio (TLR) and the presence of metastasis was determined. By using HCC cell lines with different 18F-FDG uptake, we assessed the effect of 18F-FDG uptake on in vitro cell proliferation and migration on the inhibition of glucose uptake. Ten (29.4%) of 34 patients with high TLRs had extrahepatic metastases, whereas six (7.3%) of 82 patients with low TLRs had extrahepatic metastases (p = 0.002). Hepatocellular carcinomas with high TLRs showed higher expression of glucose transporter isoform 1 and EMT markers than did HCCs with low TLRs. After treatment with a glucose uptake inhibitor, HCC cells with high 18F-FDG uptake showed decreased cell proliferation and migration and a reversal in the expression of EMT markers. High 18F-FDG uptake on PET/CT is associated with frequent extrahepatic metastasis and EMT in patients with HCC. Inhibition of glucose uptake reduced cell proliferation, reversed EMT-related protein expression, and decreased cellular migration. Glycolytic regulation could be a new therapeutic target to reduce tumor growth and metastatic potential in HCCs with a high glycolytic phenotype.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/secundário , Transição Epitelial-Mesenquimal , Fluordesoxiglucose F18/metabolismo , Neoplasias Hepáticas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Estadiamento de Neoplasias , Prognóstico , Compostos Radiofarmacêuticos/metabolismo , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas
20.
Nat Commun ; 7: 13593, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966538

RESUMO

Overexpression of NQO1 is associated with poor prognosis in human cancers including breast, colon, cervix, lung and pancreas. Yet, the molecular mechanisms underlying the pro-tumorigenic capacities of NQO1 have not been fully elucidated. Here we show a previously undescribed function for NQO1 in stabilizing HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate that NQO1 directly binds to the oxygen-dependent domain of HIF-1α and inhibits the proteasome-mediated degradation of HIF-1α by preventing PHDs from interacting with HIF-1α. NQO1 knockdown in human colorectal and breast cancer cell lines suppresses HIF-1 signalling and tumour growth. Consistent with this pro-tumorigenic function for NQO1, high NQO1 expression levels correlate with increased HIF-1α expression and poor colorectal cancer patient survival. These results collectively reveal a function of NQO1 in the oxygen-sensing mechanism that regulates HIF-1α stability in cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD(P)H Desidrogenase (Quinona)/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxigênio/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...