Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9322-9330, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38924488

RESUMO

Electrochemical CO2 reduction reaction (eCO2RR) over Cu-based catalysts is a promising approach for efficiently converting CO2 into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO2RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO2RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO2RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu2+ species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH4. Conversely, the mixed Cu0/Cu+ species in high-Cu-containing LDHs derived from the electroreduction during the eCO2RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO2RR performance for CH4 and C2+ products, respectively.

2.
Sci Adv ; 9(50): eadk0842, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100582

RESUMO

Total annual net primary productions in marine and terrestrial ecosystems are similar. However, a large portion of the newly produced marine phytoplankton biomass is converted to carbon dioxide because of predation. Which food web structure retains high carbon biomass in the plankton community in the global ocean? In 6954 individual samples or locations containing phytoplankton, unicellular protozooplankton, and multicellular metazooplankton in the global ocean, phytoplankton-dominated bottom-heavy pyramids held higher carbon biomass than protozooplankton-dominated middle-heavy diamonds or metazooplankton-dominated top-heavy inverted pyramids. Bottom-heavy pyramids predominated, but the high predation impact by protozooplankton on phytoplankton or the vertical migration of metazooplankton temporarily changed bottom-heavy pyramids to middle-heavy diamonds or top-heavy inverted pyramids but returned to bottom-heavy pyramids shortly. This finding has profound implications for carbon retention by plankton communities in the global ocean.


Assuntos
Cadeia Alimentar , Plâncton , Ecossistema , Biomassa , Fitoplâncton , Diamante
3.
Harmful Algae ; 125: 102420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220986

RESUMO

Some members of the dinoflagellate genus Alexandrium produce toxins responsible for paralytic shellfish poisoning, which causes environmental impacts and large economic losses worldwide. The Outlying Mean Index (OMI) and the Within Outlying Mean Index (WitOMI) were used to examine the ecological niches of three Alexandrium species identifying factors affecting their population dynamics in the Korea Strait (KS). Species niches were divided into seasonal subniches based on species' temporal and spatial patterns, with A. catenella being highest in the spring, A. pacificum in the summer, and A. affine in the autumn. These shifts in abundance are likely due to changes in their habitat preferences and resource availability, as well as the effects of biological constraints. A subniche-based approach, which considers the interactions between the environment and the biological characteristics of a species, was useful in understanding the factors shaping the population dynamics of the individual species. Additionally, a species distribution model was used to predict the phenology and biogeography of the three Alexandrium species in the KS and their thermal niches on a larger scale. The model predicted that, in the KS, A. catenella exists on the warm side of the thermal niche, while A. pacificum and A. affine exist on the cold side, indicating that these species may respond differently to increases in water temperature. However, the predicted phenology was incongruent with the abundance of the species as measured by droplet digital PCR. Overall, the WitOMI analysis and species distribution model can provide valuable insights into how population dynamics are influenced by the integrated interplay of biotic and abiotic processes.


Assuntos
Dinoflagellida , Estações do Ano , Ecossistema , Reação em Cadeia da Polimerase , República da Coreia
4.
Nano Lett ; 23(11): 5092-5100, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212638

RESUMO

Highly efficient electrocatalysts for the oxygen evolution reaction (OER) in neutral electrolytes are indispensable for practical electrochemical and photoelectrochemical water splitting technologies. However, there is a lack of good, neutral OER electrocatalysts because of the poor stability when H+ accumulates during the OER and slow OER kinetics at neutral pH. Herein, we report Ir species nanocluster-anchored, Co/Fe-layered double hydroxide (LDH) nanostructures in which the crystalline nature of LDH-restrained corrosion associated with H+ and the Ir species dramatically enhanced the OEC kinetics at neutral pH. The optimized OER electrocatalyst demonstrated a low overpotential of 323 mV (at 10 mA cm-2) and a record low Tafel slope of 42.8 mV dec-1. When it was integrated with an organic semiconductor-based photoanode, we obtained a photocurrent density of 15.2 mA cm-2 at 1.23 V versus reversible hydrogen in neutral electrolyte, which is the highest among all reported photoanodes to our knowledge.

6.
Nat Commun ; 14(1): 1894, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072389

RESUMO

While marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between $64,400 and $147,100/hectare each year. Collectively, they generate between $465 and $562 billion/year worldwide, with an average of $500 billion. These values are primarily driven by fisheries production (mean $29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions.


Assuntos
Ecossistema , Kelp , Humanos , Florestas , Mudança Climática , Carbono
7.
Rev Sci Instrum ; 92(10): 103906, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717372

RESUMO

Demand for high throughput manufacturing has recently increased in various fields, such as electronics, photonics, optical devices, and energy. Moreover, flexible electronic devices are indispensable in applications such as touch screens, transparent conductive electrodes, transparent film heaters, organic photovoltaics, organic light-emitting diodes, and battery. For these applications, a large-area roll-to-roll (R2R) process is a promising method for producing with high throughput. However, bending deformation of rollers is unavoidable in a large-scale R2R system, which produces non-uniformity in force distribution during processing and reduces the sample quality. In this study, we propose a new R2R imprinting module to mitigate the deformation by using an additional backup roller to achieve uniform force distribution. From numerical simulations, we found that there exists an optimal imprinting force for each backup roller length to obtain the best uniformity. Experimental results using a large-area pressure sensor verified the effectiveness of the proposed method. Finally, the R2R nanoimprint lithography process showed that the proposed method produces patterns of 100 nm width with uniform residual layer thickness, which are distributed across the substrate of 1.2 m width.

8.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523999

RESUMO

Microalgae fuel food webs and biogeochemical cycles of key elements in the ocean. What determines microalgal dominance in the ocean is a long-standing question. Red tide distribution data (spanning 1990 to 2019) show that mixotrophic dinoflagellates, capable of photosynthesis and predation together, were responsible for ~40% of the species forming red tides globally. Counterintuitively, the species with low or moderate growth rates but diverse prey including diatoms caused red tides globally. The ability of these dinoflagellates to trade off growth for prey diversity is another genetic factor critical to formation of red tides across diverse ocean conditions. This finding has profound implications for explaining the global dominance of particular microalgae, their key eco-evolutionary strategy, and prediction of harmful red tide outbreaks.

9.
Harmful Algae ; 92: 101726, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113599

RESUMO

A ubiquitous dinoflagellate, Alexandrium, produces paralytic shellfish toxin (PST), and its outbreaks have negative impacts on aquaculture, fisheries, human health, and the marine ecosystem. To minimize such damages, a routine monitoring program of toxic species must be implemented with a suitable analytical technique for their identification and quantification. However, the taxonomic identification and cell quantification of Alexandrium species based on their external morphology under a light microscope, or by using conventional molecular approaches have limited sensitivity and reproducibility. To address these challenges, we have developed an advanced protocol using droplet-digital PCR (ddPCR) for the discrimination and enumeration of three co-occurring Alexandrium species (A. affine, A. catenella, and A. pacificum) in environmental samples. Copies of species-specific internal transcribed spacer (ITS) per cell, which were calculated from environmental samples spiked with various numbers of culture cells, were used to estimate the abundance of species in the field samples. There were no significant differences in ITS copies estimated by the digital PCR assay between environmental samples from different localities, spiked artificially with a consistent number of cells from Alexandrium cultures. This sensitive assay was applied to determine the abundance and vertical distribution of those populations in the southern coastal waters of Korea. In spring, A. catenella was the dominant species, followed by the non-toxic A. affine in summers. A novel digital PCR assay can also be used to monitor other harmful marine protists that require high sample throughput and low detection limit with high accuracy and precision.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Dinoflagellida/genética , Ecossistema , Humanos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , República da Coreia
10.
Harmful Algae ; 81: 106-118, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30638494

RESUMO

Phytoplankton production in coastal waters influences seafood production and human health and can lead to harmful algal blooms. Water temperature and eutrophication are critical factors affecting phytoplankton production, although the combined effects of warming and nutrient changes on phytoplankton production in coastal waters are not well understood. To address this, phytoplankton production changes in natural waters were investigated using samples collected over eight months, and under 64 different initial conditions, established by combining four different water temperatures (i.e., ambient T, +2, +4, and + 6 °C), and two different nutrient conditions (i.e., non-enriched and enriched). Under the non-enriched conditions, the effect of warming on phytoplankton production was significantly positive in some months, significantly negative in others, or had no effect. However, under enriched conditions, warming affected phytoplankton production positively in all months except one, when the salinity was as low as 6.5. These results suggest that nutrient conditions can alter the effects of warming on phytoplankton production. Of several parameters, the ratio of initial nitrate concentration to chlorophyll a concentration [NCCA, µM (µg L-1)-1] was one of the most critical factors determining the directionality of the warming effects. In laboratory experiments, when NCCA in the ambient or nutrient-enriched waters was ≥1.2, warming increased or did not change phytoplankton production with one exception; however, when NCCA was <1.2, warming did not change or decreased production. In the time series data obtained from the coastal waters of four target countries, when NCCA was 1.5 or more, warming increased phytoplankton production, whereas when NCCA was lower than 1.5, warming lowered phytoplankton production, Thus, it is suggested that NCCA could be used as an index for predicting future phytoplankton production changes in coastal waters.


Assuntos
Clorofila A , Fitoplâncton , Proliferação Nociva de Algas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA