Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 478: 135359, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39126856

RESUMO

Polyhexamethylene guanidine (PHMG) is a positively charged polymer used as a disinfectant that kills microbes but can cause pulmonary fibrosis if inhaled. After the long-term risks were confirmed in South Korea, it became crucial to measure toxicity through diverse surrogate biomarkers, not only proteins, especially after these hazardous chemicals had cleared from the body. These biomarkers, identified by their biological functions rather than simple numerical calculations, effectively explained the imbalance of pulmonary surfactant caused by fibrosis from PHMG exposure. These long-term studies on children exposed to PHMG has shown that blood protein indicators, primarily related to apolipoproteins and extracellular matrix, can distinguish the degree of exposure to humidifier disinfectants (HDs). We defined the extreme gradient boosting models and computed reflection scores based on just ten selected proteins, which were also verified in adult women exposed to HD. The reflection scores successfully discriminated between the HD-exposed and unexposed groups in both children and adult females (AUROC: 0.957 and 0.974, respectively) and had a strong negative correlation with lung function indicators. Even after an average of more than 10 years, blood is still considered a meaningful specimen for assessing the impact of environmental exposure to toxic substances, with proteins providing in identifying the pathological severity of such conditions.

2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125582

RESUMO

Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into 'superior' and 'inferior' groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods.


Assuntos
Biomarcadores , Diferenciação Celular , Exossomos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Organoides , Retina , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/metabolismo , Organoides/citologia , Diferenciação Celular/genética , Retina/citologia , Retina/metabolismo , Biomarcadores/metabolismo , Exossomos/metabolismo , Exossomos/genética , Células Cultivadas
3.
Sci Rep ; 14(1): 15678, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977785

RESUMO

Aging and lack of exercise are the most important etiological factors for muscle loss. We hypothesized that new factors that contribute to muscle loss could be identified from ones commonly altered in expression in aged and exercise-limited skeletal muscles. Mouse gastrocnemius muscles were subjected to mass spectrometry-based proteomic analysis. The muscle proteomes of hindlimb-unloaded and aged mice were compared to those of exercised and young mice, respectively. C1qbp expression was significantly upregulated in the muscles of both hindlimb-unloaded and aged mice. In vitro myogenic differentiation was not affected by altering intracellular C1qbp expression but was significantly suppressed upon recombinant C1qbp treatment. Additionally, recombinant C1qbp repressed the protein level but not the mRNA level of NFATc1. NFATc1 recruited the transcriptional coactivator p300, leading to the upregulation of acetylated histone H3 levels. Furthermore, NFATc1 silencing inhibited p300 recruitment, downregulated acetylated histone H3 levels, and consequently suppressed myogenic differentiation. The expression of C1qbp was inversely correlated with that of NFATc1 in the gastrocnemius muscles of exercised or hindlimb-unloaded, and young or aged mice. These findings demonstrate a novel role of extracellular C1qbp in suppressing myogenesis by inhibiting the NFATc1/p300 complex. Thus, C1qbp can serve as a novel therapeutic target for muscle loss.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , Fatores de Transcrição NFATC , Animais , Masculino , Camundongos , Acetilação , Diferenciação Celular , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética
4.
Biomedicines ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791092

RESUMO

Neuron damage by microglia, which act as macrophage cells in the brain, can result in various brain diseases. However, the function of pro-inflammatory or anti-inflammatory microglia in the neurons remains controversial. Guanylate-binding protein-2 (GBP2) is expressed and activated in the microglia in the early phase of the inflammatory response and plays an important role in controlling immune responses. In this study, we evaluated whether GBP2 initially reduces the immune response induced by microglia, and whether microglia induce pro-inflammatory functions in neurons via GBP2 expression. In lipopolysaccharide (LPS)-stimulated microglia, we assessed the expression of GBP2 and how it affects neurons via activated microglia. The biological functions of microglia due to the downregulation of the GBP2 gene were examined using short hairpin RNA (shRNA)-RNA-GBP2. Downregulated GBP2 affected the function of mitochondria in the microglia and showed reduced neuronal damage when compared to the control group in the co-culture system. Furthermore, this protein was observed to be highly expressed in the brains of dementia mice. Our results are the first to report that the downregulation of GBP2 in activated microglia has an anti-inflammatory function. This study suggests that the GBP2 gene can be used as a therapeutic target biomarker for inflammation-related neurodegenerative diseases.

5.
Thyroid ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666696

RESUMO

Background: The density of tumor-associated macrophages in the tumor microenvironment of anaplastic thyroid cancer (ATC) is associated with poor prognosis. However, the crosstalk between macrophages and ATC cells is poorly understood. This study aimed to examine the impact of macrophages on cancer cell phenotypes. We found a new mediator between M2 macrophages and ATC cells through proteomics analysis. Methods: The role of macrophages in proliferation, migration, and invasion of ATC cells was evaluated using coculture assay and conditioned medium (CM). Secretory factors in the CM from single or coculture were identified using liquid chromatography-tandem mass spectrometry proteomics analysis. We evaluated the role of the secretory factor in proliferation, migration, and invasion of cancer cells. In vivo xenograft model was used to evaluate the effect of the factor. Results: M2 macrophages significantly increased the proliferation, migration, and invasion of ATC cells, whereas M1 macrophages decreased the proliferation, migration, and invasion of ATC cells. Based on proteomic analysis of CM, we identify carboxypeptidase A4 (CPA4) as a mediator of the crosstalk between macrophages and ATC cells. CPA4 was only detected in the coculture media of M2 macrophage/8505C, and its expression in cancer cells increased by M2 macrophage. The expression of CPA4 protein was significantly higher in human thyroid cancers, particularly in ATCs, than normal and benign tissues. A bioinformatics analysis of public data revealed that CPA4 expression was associated with poor prognosis and dedifferentiation of thyroid cancer. Knockdown of CPA4 suppressed proliferation, colony formation, migration, and invasion of ATC cells, consistent with the decrease of STAT3, ERK, and AKT/mTOR phosphorylation and epithelial-mesenchymal transition (EMT) marker expression. In addition, the increased expression of CPA4 in cancer cells by M2 macrophage stimulation induced the polarization of macrophages to the M2 phenotype, which formed a positive feedback loop. Xenograft tumors did not develop after CPA4 knockdown. Conclusions: Our data suggest that CPA4 stimulates the progression of thyroid cancer by mediating between M2 macrophages and ATC cells. CPA4 can be a new therapeutic target for the treatment of patients with ATC.

6.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474121

RESUMO

The integration of innovative medical technologies and interdisciplinary collaboration could improve the treatment of cancer, a globally prevalent and often deadly disease. Despite recent advancements, current cancer therapies fail to specifically address recurrence and target cancer stem cells (CSCs), which contribute to relapse. In this study, we utilized three types of cancer cells, from which three types of CSCs were further derived, to conduct a proteomic analysis. Additionally, shared cell surface biomarkers were identified as potential targets for a comprehensive treatment strategy. The selected biomarkers were evaluated through short hairpin RNA treatment, which revealed contrasting functions in cancer cells and CSCs. Knockdown of the identified proteins revealed that they regulate the epithelial-mesenchymal transition (EMT) and stemness via the ERK signaling pathway. Resistance to anticancer agents was consequently reduced, ultimately enhancing the overall anticancer effects of the treatment. Additionally, the significance of these biomarkers in clinical patient outcomes was confirmed using bioinformatics. Our study suggests a novel cancer treatment strategy that addresses the limitations of current anticancer therapies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Proteômica , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo
7.
Adv Mater ; 36(27): e2311283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38489768

RESUMO

Organ-selective drug delivery is expected to maximize the efficacy of various therapeutic modalities while minimizing their systemic toxicity. Lipid nanoparticles and polymersomes can direct the organ-selective delivery of mRNAs or gene editing machineries, but their delivery is limited to mostly liver, spleen, and lung. A platform that enables delivery to these and other target organs is urgently needed. Here, a library of glycocalyx-mimicking nanoparticles (GlyNPs) comprising five randomly combined sugar moieties is generated, and direct in vivo library screening is used to identify GlyNPs with preferential biodistribution in liver, spleen, lung, kidneys, heart, and brain. Each organ-targeting GlyNP hit show cellular tropism within the organ. Liver, kidney, and spleen-targeting GlyNP hits equipped with therapeutics effectively can alleviate the symptoms of acetaminophen-induced liver injury, cisplatin-induced kidney injury, and immune thrombocytopenia in mice, respectively. Furthermore, the differential organ targeting of GlyNP hits is influenced not by the protein corona but by the sugar moieties displayed on their surface. It is envisioned that the GlyNP-based platform may enable the organ- and cell-targeted delivery of therapeutic cargoes.


Assuntos
Glicocálix , Nanopartículas , Glicocálix/metabolismo , Glicocálix/química , Animais , Nanopartículas/química , Camundongos , Distribuição Tecidual , Humanos , Especificidade de Órgãos , Sistemas de Liberação de Medicamentos , Acetaminofen/química , Cisplatino/química , Cisplatino/farmacologia , Materiais Biomiméticos/química
8.
Nat Commun ; 15(1): 1487, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374152

RESUMO

Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.


Assuntos
Sistema Cardiovascular , Placenta , Proteínas da Gravidez , Animais , Feminino , Humanos , Camundongos , Gravidez , Diferenciação Celular , Desenvolvimento Embrionário , Placenta/metabolismo , Placentação/fisiologia , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Fatores Supressores Imunológicos/metabolismo , Trofoblastos/metabolismo , Sistema Cardiovascular/embriologia
9.
Clin Proteomics ; 21(1): 17, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424522

RESUMO

BACKGROUND: Immunotherapy is applied to breast cancer to resolve the limitations of survival gain in existing treatment modalities. With immunotherapy, a tumor can be classified into immune-inflamed, excluded and desert based on the distribution of immune cells. We assessed the clinicopathological features, each subtype's prognostic value and differentially expressed proteins between immune subtypes. METHODS: Immune subtyping and proteomic analysis were performed on 56 breast cancer cases with neoadjuvant chemotherapy. The immune subtyping was based on the level of tumor-infiltrating lymphocytes (TILs) and Klintrup criteria. If the level of TILs was ≥ 10%, it was classified as immune-inflamed type without consideration of the Klintrup criteria. In cases of 1-9% TIL, Klintrup criteria 1-3 were classified as the immune-excluded subtype and Klintrup criteria not available (NA) was classified as NA. Cases of 1% TILs and Klintrup 0 were classified as the immune-desert subtype. Mass spectrometry was used to identify differentially expressed proteins in formalin-fixed paraffin-embedded biopsy tissues. RESULTS: Of the 56 cases, 31 (55%) were immune-inflamed, 21 (38%) were immune-excluded, 2 (4%) were immune-desert and 2 (4%) were NA. Welch's t-test revealed two differentially expressed proteins between immune-inflamed and immune-excluded/desert subtypes. Coronin-1A was upregulated in immune-inflamed tumors (adjusted p = 0.008) and α-1-antitrypsin was upregulated in immune-excluded/desert tumors (adjusted p = 0.008). Titin was upregulated in pathologic complete response (pCR) than non-pCR among immune-inflamed tumors (adjusted p = 0.036). CONCLUSIONS: Coronin-1A and α-1-antitrypsin were upregulated in immune-inflamed and immune-excluded/desert subtypes, respectively. Titin's elevated expression in pCR within the immune-inflamed subtype may indicate a favorable prognosis. Further studies involving large representative cohorts are necessary to validate these findings.

10.
Liver Int ; 44(5): 1202-1218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363048

RESUMO

BACKGROUND & AIMS: Lymphocyte-rich hepatocellular carcinoma (LR-HCC) is largely unknown and a rare subtype of HCC with immune-rich stroma. Tertiary lymphoid structures (TLS), frequently observed in LR-HCC, are known to be prognostically significant in various malignancies; however, their significance in HCC remains unevaluated. METHODS: Clinicopathologic data of 191 cases of surgically resected conventional HCC (C-HCC, n = 160) and LR-HCC (n = 31) were retrieved. Immunohistochemistry, multiplex immunofluorescence staining, RNA sequencing and proteomic analysis were conducted. Differences between the subtypes were statistically evaluated. RESULTS: LR-HCC was significantly correlated to larger tumour size, higher Edmondson-Steiner grade, presence of TLS and higher CD3-, CD8- and FOXP3-positive T cell, high PD-1 and PD-L1 expression (p < .001 for all) compared to C-HCC. Patients with LR-HCC exhibited significantly better overall survival (OS) (p = .044) and recurrence-free survival (RFS) (p = .025) than C-HCC. LR-HCC demonstrated TLS signatures with significantly higher proteomic-based immune scores in 14 of 17 types of tumour-infiltrating immune cells. Furthermore, C-HCC with secondary follicles, the most mature form of TLS, exhibited significantly better OS (p = .031) and RFS (p = .033) than those without. Across the global proteome, LR-HCC was well-differentiated from C-HCC and a map of protein-protein interactions between tumour-infiltrating lymphocytes and HCC in tumour microenvironment was completed. CONCLUSION: LR-HCC is clinicopathologically and molecularly distinct and shows better prognosis compared to C-HCC. Also, the presence of secondary follicle can be an important prognostic marker for better prognosis in both LR-HCC and C-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Linfoides Terciárias , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Estruturas Linfoides Terciárias/patologia , Proteômica , Biomarcadores Tumorais/análise , Linfócitos do Interstício Tumoral , Microambiente Tumoral
11.
EJNMMI Res ; 14(1): 8, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252356

RESUMO

BACKGROUND: The increased expression of the nicotinic acetylcholine receptor (nAChR) in muscle denervation is thought to be associated with electrophysiological acetylcholine supersensitivity after nerve injury. Hence, we investigated the utility of the 18F-ASEM alpha7-nAChR targeting radiotracer as a new diagnostic method by visualizing skeletal muscle denervation in mouse models of sciatic nerve injury. METHODS: Ten-week-old C57BL/6 male mice were utilized. The mice were anesthetized, and the left sciatic nerve was resected after splitting the gluteal muscle. One week (n = 11) and three weeks (n = 6) after the denervation, 18F-ASEM positron emission tomography/magnetic resonance imaging (PET/MRI) was acquired. Maximum standardized uptake values (SUVmax) of the tibialis anterior muscle were measured for the denervated side and the control side. Autoradiographic evaluation was performed to measure the mean counts of the denervated and control tibialis anterior muscles at one week. In addition, immunohistochemistry was used to identify alpha7-nAChR-positive areas in denervated and control tibialis anterior muscles at one week (n = 6). Furthermore, a blocking study was conducted with methyllycaconitine (MLA, n = 5). RESULTS: 18F-ASEM PET/MRI showed significantly increased 18F-ASEM uptake in the denervated tibialis anterior muscle relative to the control side one week and three weeks post-denervation. SUVmax of the denervated muscles at one week and three weeks showed significantly higher uptake than the control (P = 0.0033 and 0.0277, respectively). The relative uptake by autoradiography for the denervated muscle was significantly higher than in the control, and immunohistochemistry revealed significantly greater alpha7-nAChR expression in the denervated muscle (P = 0.0277). In addition, the blocking study showed no significant 18F-ASEM uptake in the denervated side when compared to the control (P = 0.0796). CONCLUSIONS: Our results suggest that nAChR imaging with 18F-ASEM has potential as a noninvasive diagnostic method for peripheral nervous system disorders.

12.
Sci Rep ; 14(1): 853, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191507

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) deficiency causes refractory inflammatory bowel disease. The XIAP protein plays a pivotal role in the pro-inflammatory response through the nucleotide-binding oligomerization domain-containing signaling pathway that is important in mucosal homeostasis. We analyzed the molecular mechanism of non-synonymous pathogenic variants (PVs) of XIAP BIR2 domain. We generated N-terminally green fluorescent protein-tagged XIAP constructs of representative non-synonymous PVs. Co-immunoprecipitation and fluorescence cross-correlation spectroscopy showed that wild-type XIAP and RIP2 preferentially interacted in live cells, whereas all non-synonymous PV XIAPs failed to interact properly with RIP2. Structural analysis showed that various structural changes by mutations, such as hydrophobic core collapse, Zn-finger loss, and spatial rearrangement, destabilized the two loop structures (174-182 and 205-215) that critically interact with RIP2. Subsequently, it caused a failure of RIP2 ubiquitination and loss of protein deficiency by the auto-ubiquitination of all XIAP mutants. These findings could enhance our understanding of the role of XIAP mutations in XIAP-deficient inflammatory bowel disease and may benefit future therapeutic strategies.


Assuntos
Doenças Inflamatórias Intestinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Humanos , Proteínas de Fluorescência Verde , Homeostase , Doenças Inflamatórias Intestinais/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
13.
BMC Biol ; 22(1): 23, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287397

RESUMO

BACKGROUND: Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS: Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS: Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.


Assuntos
Autofagossomos , Glioblastoma , Humanos , Autofagossomos/metabolismo , Glioblastoma/metabolismo , Autofagia , Proteômica , Lisossomos/metabolismo , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA