Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transgenic Res ; 27(2): 211-224, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29574513

RESUMO

This study assessed the effect of supplementation of novel transgenic phytase on growth performance and bone mineralization in Korean native broiler chickens. The experiment was designed using four dietary groups: those with a diet supplemented with (A) recombinant phytase, (B) transgenic phytase from the plant Lemna minor, (C) or wild-type L. minor as well as (D) a control group that was supplemented with commercially available feed. Three hundred 1-day-old Korean native broiler chicks were used and divided into these four dietary treatment groups having three replicates of 25 birds each (n = 75). The results showed increases in growth performance and bone mineralization in Groups B and C; compared with Groups A and D. Hematological analyses revealed notable contrasts in erythrocyte sedimentation rate, red blood cell count, and hemoglobin levels among the experimental groups, whereas no impacts of dietary treatment were observed on total eosinophil, lymphocyte, heterophil, monocyte, and basophil levels. The relative expression profiling of candidate genes showed that the genes involved in growth response, meat quality, and P-Ca metabolism were significantly highly expressed in the phytase-supplemented groups. Hence, it is suggested that dietary supplementation with transgenic phytase plant L. minor for enhancing growth performance is a promising new approach in the broiler feed industry. To the best of our knowledge, we report here the most comprehensive analysis using a broiler model that provides a workable platform for further research on the cost-effective production of feed with different compositions that might be beneficial in the livestock feed industry.


Assuntos
6-Fitase/genética , Ração Animal , Araceae/genética , Plantas Comestíveis/genética , 6-Fitase/química , Animais , Araceae/química , Calcificação Fisiológica/genética , Galinhas/crescimento & desenvolvimento , Suplementos Nutricionais , Plantas Geneticamente Modificadas/genética
2.
BMC Genomics ; 18(1): 695, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874115

RESUMO

BACKGROUND: Zinc finger homeodomain proteins (ZHD) constitute a plant-specific transcription factor family with a conserved DNA binding homeodomain and a zinc finger motif. Members of the ZHD protein family play important roles in plant growth, development, and stress responses. Genome-wide characterization of ZHD genes has been carried out in several model plants, including Arabidopsis thaliana and Oryza sativa, but not yet in tomato (Solanum lycopersicum). RESULTS: In this study, we performed the first comprehensive genome-wide characterization and expression profiling of the ZHD gene family in tomato (Solanum lycopersicum). We identified 22 SlZHD genes and classified them into six subfamilies based on phylogeny. The SlZHD genes were generally conserved in each subfamily, with minor variations in gene structure and motif distribution. The 22 SlZHD genes were distributed on six of the 12 tomato chromosomes, with segmental duplication detected in four genes. Analysis of Ka/Ks ratios revealed that the duplicated genes are under negative or purifying selection. Comprehensive expression analysis revealed that the SlZHD genes are widely expressed in various tissues, with most genes preferentially expressed in flower buds compared to other tissues. Moreover, many of the genes are responsive to abiotic stress and phytohormone treatment. CONCLUSION: Systematic analysis revealed structural diversity among tomato ZHD proteins, which indicates the possibility for diverse roles of SlZHD genes in different developmental stages as well as in response to abiotic stresses. Our expression analysis of SlZHD genes in various tissues/organs and under various abiotic stress and phytohormone treatments sheds light on their functional divergence. Our findings represent a valuable resource for further analysis to explore the biological functions of tomato ZHD genes.


Assuntos
Perfilação da Expressão Gênica , Genômica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Dedos de Zinco , Cromossomos de Plantas/genética , Duplicação Gênica , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Sintenia/genética
3.
Genes (Basel) ; 7(10)2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27690110

RESUMO

The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development. The comparatively higher expression of SlADF3 and SlADF11 at early fruit developmental stages might implicate them in determining final fruit size. SlADF5 and SlADF8 had relatively higher levels of expression five days after the breaker stage of fruit development, suggesting their possible role in fruit ripening. Notably, six genes were induced by cold and heat, seven by drought, five by NaCl, and four each by abscisic acid (ABA), jasmonic acid (JA) and wounding treatments. The differential expression patterns of the SlADF genes under different types of stresses suggested their function in stress tolerance in tomato plants. Our results will be helpful for the functional characterization of ADF genes during organ and fruit development of tomato under different stresses.

4.
Plant Physiol Biochem ; 108: 177-190, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27439220

RESUMO

LIM domain proteins, some of which have been shown to be actin binding proteins, are involved in various developmental activities and cellular processes in plants. To date, the molecular defense-related functions of LIM family genes have not been investigated in any solanaceous vegetable crop species. In this study, we identified 15 LIM family genes in tomato (Solanum lycopersicum L.) through genome-wide analysis and performed expression profiling in different organs of tomato, including fruits at six different developmental stages. We also performed expression profiling of selected tomato LIM genes in plants under ABA, drought, cold, NaCl and heat stress treatment. The encoded proteins of the 15 tomato LIM genes were classified into two main groups, i.e., proteins similar to cysteine-rich proteins and plant-specific DAR proteins, based on differences in functional domains and variability in their C-terminal regions. The DAR proteins contain a so far poorly characterized zinc-finger-like motif that we propose to call DAR-ZF. Six of the 15 LIM genes were expressed only in flowers, indicating that they play flower-specific roles in plants. The other nine genes were expressed in all organs and at various stages of fruit development. SlßLIM1b was expressed relatively highly at the later stage of fruit development, but three other genes, SlWLIM2a, SlDAR2 and SlDAR4, were expressed at the early stage of fruit development. Seven genes were induced by ABA, five by cold, seven by drought, eight by NaCl and seven by heat treatment respectively, indicating their possible roles in abiotic stress tolerance. Our results will be useful for functional analysis of LIM genes during fruit development in tomato plants under different abiotic stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Cromossomos de Plantas , Flores/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...