Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798440

RESUMO

Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.

2.
Front Microbiol ; 15: 1361583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495511

RESUMO

A novel halotolerant actinobacterium, designated as RG38T, capable of producing black extracellular melanin pigment on SP2 agar, was isolated from the roots of Tagetes patula. Comparative analysis of the 16S rRNA gene sequence revealed the highest similarity to Streptomyces collinus NBRC 12759T (99.3%). Phylogenetic analysis showed that strain RG38T clustered within the genus Streptomyces forming a monophyletic cluster with its close relatives. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and amino-acid identity (AAI) values between strain RG38T and related species within the genus Streptomyces were below the standard threshold for prokaryotic species delineation. The DNA G + C content of the strain RG38T was determined to be 73.3%. The genome size measured 7,150,598 bp comprising 17 contigs and encompassed 6,053 protein coding genes. AntiSMASH analysis of the whole genome revealed 35 putative biosynthetic gene clusters (BGCs) responsible for various secondary metabolites. Among these clusters, two gene clusters exhibited 100% similarity to the chromomycin A3, albaflavenone, and anthracimycin, respectively. These compounds were reported to possess significant anticancer and antibacterial activities. LC-MS-based analysis, coupled with further isolation studies, confirmed the production of chromomycins A2 (1), A3 (2), and their derivatives, along with their antibiotic activities. These findings underscore the potential of this novel strain as a novel resource for the discovery of diverse antimicrobial compounds. This study is the first to report an antimicrobial compound producing Streptomyces species isolated from medicinal plant T. patula. Based on a polyphasic study, the strain RG38T isolated from an unexplored habitat with a high potential for new natural products represents a novel species within the genus Streptomyces. Accordingly, we propose the name Streptomyces tagetis sp. nov. for this novel species, with the type strain is RG38T (=KCTC 49624T = TBRC 15113T).

3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894935

RESUMO

Deubiquitinases (DUBs) are essential for bone remodeling by regulating the differentiation of osteoblast and osteoclast. USP17 encodes for a deubiquitinating enzyme, specifically known as ubiquitin-specific protease 17, which plays a critical role in regulating protein stability and cellular signaling pathways. However, the role of USP17 during osteoblast differentiation has not been elusive. In this study, we initially investigated whether USP17 could regulate the differentiation of osteoblasts. Moreover, USP17 overexpression experiments were conducted to assess the impact on osteoblast differentiation induced by bone morphogenetic protein 4 (BMP4). The positive effect was confirmed through alkaline phosphatase (ALP) expression and activity studies since ALP is a representative marker of osteoblast differentiation. To confirm this effect, Usp17 knockdown was performed, and its impact on BMP4-induced osteoblast differentiation was examined. As expected, knockdown of Usp17 led to the suppression of both ALP expression and activity. Mechanistically, it was observed that USP17 interacted with Osterix (Osx), which is a key transcription factor involved in osteoblast differentiation. Furthermore, overexpression of USP17 led to an increase in Osx protein levels. Thus, to investigate whether this effect was due to the intrinsic function of USP17 in deubiquitination, protein stabilization experiments and ubiquitination analysis were conducted. An increase in Osx protein levels was attributed to an enhancement in protein stabilization via USP17-mediated deubiquitination. In conclusion, USP17 participates in the deubiquitination of Osx, contributing to its protein stabilization, and ultimately promoting the differentiation of osteoblasts.


Assuntos
Osteoblastos , Osteogênese , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Osteogênese/genética , Osteoblastos/metabolismo , Diferenciação Celular/genética , Estabilidade Proteica , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo
4.
J Cheminform ; 15(1): 71, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550756

RESUMO

The identification of molecular structure is essential for understanding chemical diversity and for developing drug leads from small molecules. Nevertheless, the structure elucidation of small molecules by Nuclear Magnetic Resonance (NMR) experiments is often a long and non-trivial process that relies on years of training. To achieve this process efficiently, several spectral databases have been established to retrieve reference NMR spectra. However, the number of reference NMR spectra available is limited and has mostly facilitated annotation of commercially available derivatives. Here, we introduce DeepSAT, a neural network-based structure annotation and scaffold prediction system that directly extracts the chemical features associated with molecular structures from their NMR spectra. Using only the 1H-13C HSQC spectrum, DeepSAT identifies related known compounds and thus efficiently assists in the identification of molecular structures. DeepSAT is expected to accelerate chemical and biomedical research by accelerating the identification of molecular structures.

5.
Cult Stud Sci Educ ; : 1-29, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37360052

RESUMO

This study examines and describes how various online remote laboratory courses, necessitated by the COVID-19 pandemic, were implemented at Hankuk University in Korea in 2020. We compared four general undergraduate laboratory courses, one each for physics, chemistry, biology, and earth science, and two major-level laboratory courses taught during the spring and fall of 2020. Employing a sociocultural perspective, we examined how the changes in structures at the macro-, meso-, and micro-levels shaped the responses of educational authorities and impacted the agency of university instructors. Instructors implemented various remote laboratory courses in each content area dependent upon availability and access to material resources, including access to video of laboratory activities, and also based on the nature of experimental data associated with each content area. Drawing from survey responses and in-depth interviews with instructors and students, we share findings about how instructor practices impacted the interactions of students, the processes for evaluation, and student learning. We discuss how the global pandemic has re-ignited the debate about the role and value of experimental laboratory activities for undergraduate science majors and about the significance of hands-on versus minds-on science learning. Implications for how universities approach laboratory coursework in the post-COVID-19 are discussed, and questions for university science instruction are raised for future research.

6.
Cult Stud Sci Educ ; : 1-21, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36845564

RESUMO

Repeated closures of the world's science museums to stem the spread of COVID-19 have significantly reduced visitors' access to informal science learning opportunities. Interviews with educators and an analysis of the online content of a science museum were used in this case study to examine the impact of this phenomenon on informal science education. We present several education examples to highlight how educators have attempted to adapt. Specifically, we describe and characterize educators' strategies-collaboration, networking, and feedback-to address difficulties involved in developing virtually accessible content that will engage users. In addition, we analyze essential attributes of informal learning in the science museum attributes of interaction, free-choice learning, hands-on experience, and authentic learning that the educators kept in mind while planning and redesigning educational programs and cultural events in response to COVID-19. We conclude by forecasting the future of science museums based on the educators' perceptions of their roles and the nature of informal science learning, assuming that educators are the crucial agents to build a new future direction.

7.
Diagnostics (Basel) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201393

RESUMO

Copy number variation (CNV) is a primary source of structural variation in the human genome, leading to several disorders. Therefore, analyzing neonatal CNVs is crucial for managing CNV-related chromosomal disabilities. However, genomic waves can hinder accurate CNV analysis. To mitigate the influences of the waves, we adopted a machine learning approach and developed a new method that uses a modified log R ratio instead of the commonly used log R ratio. Validation results using samples with known CNVs demonstrated the superior performance of our method. We analyzed a total of 16,046 Korean newborn samples using the new method and identified CNVs related to 39 genetic disorders were identified in 342 cases. The most frequently detected CNV-related disorder was Joubert syndrome 4. The accuracy of our method was further confirmed by analyzing a subset of the detected results using NGS and comparing them with our results. The utilization of a genome-wide single nucleotide polymorphism array with wave offset was shown to be a powerful method for identifying CNVs in neonatal cases. The accurate screening and the ability to identify various disease susceptibilities offered by our new method could facilitate the identification of CNV-associated chromosomal disease etiologies.

8.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012517

RESUMO

Cyclophilin A (CypA) is a ubiquitously expressed and highly conserved protein with peptidyl-prolyl cis-trans isomerase activity that is involved in various biological activities by regulating protein folding and trafficking. Although CypA has been reported to positively regulate osteoblast differentiation, the mechanistic details remain largely unknown. In this study, we aimed to elucidate the mechanism of CypA-mediated regulation of osteoblast differentiation. Overexpression of CypA promoted osteoblast differentiation in bone morphogenic protein 4 (BMP4)-treated C2C12 cells, while knockdown of CypA inhibited osteoblast differentiation in BMP4-treated C2C12. CypA and Runx2 were shown to interact based on immunoprecipitation experiments and CypA increased Runx2 transcriptional activity in a dose-dependent manner. Our results indicate that this may be because CypA can increase the DNA binding affinity of Runx2 to Runx2 binding sites such as osteoblast-specific cis-acting element 2. Furthermore, to identify factors upstream of CypA in the regulation of osteoblast differentiation, various kinase inhibitors known to affect osteoblast differentiation were applied during osteogenesis. Akt inhibition resulted in the most significant suppression of osteogenesis in BMP4-induced C2C12 cells overexpressing CypA. Taken together, our results show that CypA positively regulates osteoblast differentiation by increasing the DNA binding affinity of Runx2, and Akt signaling is upstream of CypA.


Assuntos
Ciclofilina A , Osteogênese , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , DNA/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457117

RESUMO

Yin Yang 2 (YY2) is a paralog of YY1, a well-known multifunctional transcription factor containing a C-terminal zinc finger domain. Although the role of YY1 in various biological processes, such as the cell cycle, cell differentiation and tissue development, is well established, the function of YY2 has not been fully determined. In this study, we investigated the functional role of YY2 during osteoblast differentiation. YY2 overexpression and knockdown increased and decreased osteoblast differentiation, respectively, in BMP4-induced C2C12 cells. Mechanistically, YY2 overexpression increased the mRNA and protein levels of Osterix (Osx), whereas YY2 knockdown had the opposite effect. To investigate whether YY2 regulates Osx transcription, the effect of YY2 overexpression and knockdown on Osx promoter activity was evaluated. YY2 overexpression significantly increased Osx promoter activity in a dose-dependent manner, whereas YY2 knockdown had the opposite effect. Furthermore, vectors containing deletion and point mutations were constructed to specify the regulation site. Both the Y1 and Y2 sites were responsible for YY2-mediated Osx promoter activation. These results indicate that YY2 is a positive regulator of osteoblast differentiation that functions by upregulating the promoter activity of Osx, a representative osteogenic transcription factor in C2C12 cells.


Assuntos
Osteogênese , Yin-Yang , Diferenciação Celular/genética , Osteoblastos/metabolismo , Osteogênese/genética , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cult Stud Sci Educ ; 17(2): 341-354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340284

RESUMO

Science museums have long been heralded as important informal science education sites where people can engage in voluntary and experiential science learning. In this paper, we identify and raise questions about how science museum responses to a global pandemic could impact on accessibility of informal science education for the public. To explore these issues, we examined the response of the Gwacheon National Science Museum (GNSM) to COVID-19 in South Korea using publicly available data from the museum website and museum YouTube video channel. Analysis shows that the pandemic has increased and diversified the GNSM's provision of science content for the general public via online platforms, such as YouTube and the museum website. In addition, GNSM educators are preparing special outreach education projects for deaf and blind visitors, who have often been excluded from informal science learning opportunities. By discussing these changes, we seek to raise questions about the potential for a global pandemic, like COVID-19, to affect informal science learning opportunities for a diverse group of people.

11.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919218

RESUMO

Metallothioneins (MTs) are intracellular cysteine-rich proteins, and their expressions are enhanced under stress conditions. MTs are recognized as having the ability to regulate redox balance in living organisms; however, their role in regulating osteoblast differentiation is still unclear. In this research, we found that the expression of MT3, one member of the MT protein family, was specifically upregulated in the differentiation process of C2C12 myoblasts treated with bone morphogenetic protein 4 (BMP4). Transfection with MT3-overexpressing plasmids in C2C12 cells enhanced their differentiation to osteoblasts, together with upregulating the protein expression of bone specific transcription factors runt-related gene 2 (Runx2), Osterix, and distal-less homeobox 5 (Dlx5). Additionally, MT3 knockdown performed the opposite. Further studies revealed that overexpression of MT3 decreased reactive oxygen species (ROS) production in C2C12 cells treated with BMP4, and MT3 silencing enhanced ROS production. Treating C2C12 cells with antioxidant N-acetylcysteine also promoted osteoblast differentiation, and upregulated Runx2/Osterix/Dlx5, while ROS generator antimycin A treatment performed the opposite. Finally, antimycin A treatment inhibited osteoblast differentiation and Runx2/Osterix/Dlx5 expression in MT3-overexpressing C2C12 cells. These findings identify the role of MT3 in osteoblast differentiation and indicate that MT3 may have interesting potential in the field of osteogenesis research.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Mioblastos/citologia , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/citologia , Osteogênese , Estresse Oxidativo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Metalotioneína 3 , Camundongos , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Osteoblastos/metabolismo
12.
J Nat Prod ; 84(3): 601-607, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33527835

RESUMO

Broussochalcones A (BCA, 1) and B (BCB, 2) are major bioactive constituents isolated from Broussonetia papyrifera, a polyphenol-rich plant belonging to the family Moraceae. Due to their low yields from natural sources, BCA (1) and BCB (2) were prepared synthetically by employing Claisen-Schmidt condensation, and these were used as substrates for microbial transformation to obtain novel derivatives. Microbial transformation of BCA (1) and BCB (2) with the endophytic fungus Aspergillus niger KCCM 60332 yielded 10 previously undescribed chalcones (1a-1e and 2a-2e). Their structures were established based on the spectroscopic methods. The cytotoxicity of BCA (1), BCB (2), and their metabolites (1a-1e and 2a-2e) was determined by human cancer cell lines A375P, A549, HT-29, MCF-7, and HepG2, with 1e shown to be most cytotoxic.


Assuntos
Aspergillus niger/metabolismo , Chalconas/metabolismo , Chalconas/farmacologia , Biotransformação , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
13.
Biochem Biophys Res Commun ; 504(1): 340-345, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190123

RESUMO

Berberine has been implicated to be involved in maintaining bone health due to its anti-oxidative and osteogenic properties. However, low potency and low bioavailability limit the clinical development of the drug. To overcome these obstacles, we previously synthesized a compound, Q8, which is a structural homolog of berberine. The present study examined the pharmacological functions of Q8 to evaluate its potential use in bone regeneration with respect to osteoblast differentiation. Here, we report that Q8 enhanced BMP4-induced alkaline phosphatase (ALP) activity and transcription from the ALP promoter. In addition, Q8 suppressed the expression and activity of PPARγ (a known negative regulator of osteogenesis due to its stimulatory effects on adipogenesis and its role as an adipogenic transcription factor), which in turn increases ß-catenin expression in the nucleus, and ultimately promotes osteoblast differentiation. Meanwhile, Q8 reversed the inhibitory effects of the PPARγ agonist, rosiglitazone, on osteoblast differentiation. This study demonstrated that Q8 promotes osteoblast differentiation via inhibition of PPARγ and the enhancement of osteoblast function by Q8 may contribute to the prevention for osteoporosis.


Assuntos
Berberina/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Berberina/análogos & derivados , Diferenciação Celular , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Mioblastos/metabolismo , Osteoblastos/metabolismo , Osteoporose , PPAR gama/metabolismo , Fosforilação , Rosiglitazona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...