Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 18(3): 031507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947281

RESUMO

The low success rate of new drugs transitioning from animal testing to human clinical trials necessitates the development of more accurate and representative in vitro models. Recent advances in multi-organ-on-a-chip technology offer promising avenues for studying complex organ-organ interactions. Gut-liver-on-a-chip systems hold particular promise for mimicking the intricate interplay between the gut and liver, which play crucial roles in nutrient absorption, drug metabolism, detoxification, and immune response. Here, we discuss the key components of the gut-liver axis, including the gut epithelium, liver cells, gut microbiota, and their roles in the organ functions. We then explore the potential of gut-liver-on-a-chip models to replicate the intricate interactions between the two organs for pharmacokinetic studies and their expansion to more complicated multi-organ models. Finally, we provide perspectives and future directions for developing more physiologically relevant gut-liver-axis models for more efficient drug development, studying liver diseases, and personalizing treatment strategies.

2.
Front Bioeng Biotechnol ; 12: 1382389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681959

RESUMO

A complex and dynamic network of interactions exists between human gastrointestinal epithelium and intestinal microbiota. Therefore, comprehending intestinal microbe-epithelial cell interactions is critical for the understanding and treatment of intestinal diseases. Primary human colonic epithelial cells derived from a healthy human donor were co-cultured with Clostridium scindens (C. scindens), a probiotic obligate anaerobe; Staphylococcus aureus (S. aureus), a facultative anaerobe and intestinal pathogen; or both bacterial species in tandem. The co-culture hanging basket platform used for these experiments possessed walls of controlled oxygen (O2) permeability to support the formation of an O2 gradient across the intestinal epithelium using cellular O2 consumption, resulting in an anaerobic luminal and aerobic basal compartment. Both the colonic epithelial cells and C. scindens remained viable over 48 h during co-culture. In contrast, co-culture with S. aureus elicited significant damage to colonic epithelial cells within 24 h. To explore the influence of the intestinal pathogen on the epithelium in the presence of the probiotic bacteria, colonic epithelial cells were inoculated sequentially with the two bacterial species. Under these conditions, C. scindens was capable of repressing the production of S. aureus enterotoxin. Surprisingly, although C. scindens converted cholic acid to secondary bile acids in the luminal medium, the growth of S. aureus was not significantly inhibited. Nevertheless, this combination of probiotic and pathogenic bacteria was found to benefit the survival of the colonic epithelial cells compared with co-culture of the epithelial cells with S. aureus alone. This platform thus provides an easy-to-use and low-cost tool to study the interaction between intestinal bacteria and colonic cells in vitro to better understand the interplay of intestinal microbiota with human colonic epithelium.

3.
Adv Healthc Mater ; : e2302777, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243887

RESUMO

The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.

4.
Biochip J ; : 1-27, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37363268

RESUMO

In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.

5.
Neural Netw ; 153: 104-119, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716619

RESUMO

Graph Neural Networks (GNNs) have been widely applied to various fields due to their powerful representations of graph-structured data. Despite the success of GNNs, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. To address these limitations, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which preclude noisy connections and include useful connections (e.g., meta-paths) for tasks, while learning effective node representations on the new graphs in an end-to-end fashion. We further propose enhanced version of GTNs, Fast Graph Transformer Networks (FastGTNs), that improve scalability of graph transformations. Compared to GTNs, FastGTNs are up to 230× and 150× faster in inference and training, and use up to 100× and 148× less memory while allowing the identical graph transformations as GTNs. In addition, we extend graph transformations to the semantic proximity of nodes allowing non-local operations beyond meta-paths. Extensive experiments on both homogeneous graphs and heterogeneous graphs show that GTNs and FastGTNs with non-local operations achieve the state-of-the-art performance for node classification tasks. The code is available: https://github.com/seongjunyun/Graph_Transformer_Networks.


Assuntos
Aprendizagem , Redes Neurais de Computação , Semântica
6.
Front Bioeng Biotechnol ; 10: 890396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757791

RESUMO

An in vitro platform was designed and optimized for the co-culture of probiotic anaerobic bacteria with a primary human colonic epithelium having a goal of assessing the anti-inflammatory impact of the probiotic bacteria. The device maintained a luminal O2 concentration at <1% while also supporting an oxygenated basal compartment at 10% for at least 72 h. Measurement of the transepithelial resistance of a confluent colonic epithelium showed high monolayer integrity while fluorescence assays demonstrated that the monolayer was comprised primarily of goblet cells and colonocytes, the two major differentiated cell subtypes of the colonic epithelium. High monolayer barrier function and viability were maintained during co-culture of the epithelium with the probiotic obligate anaerobe Anaerobutyricum hallii (A. hallii). Importantly the device supported a static co-culture of microbes and colonic epithelium mimicking the largely static or low flow conditions within the colonic lumen. A model inflamed colonic epithelium was generated by the addition of tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) to the basal and luminal epithelium sides, respectively. Co-culture of A. hallii with the LPS/TNF-α treated intestine diminished IL-8 secretion by ≥40% which could be mimicked by co-culture with the A. hallii metabolite butyrate. In contrast, co-culture of the inflamed epithelium with two strains of lactic acid-producing bacteria, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium adolescentis (B. adolescentis), did not diminish epithelial IL-8 secretion. Co-culture with colonic epithelial cells from different donors demonstrated a consistent anti-inflammatory effect by A. hallii, but distinct responses to co-culture with LGG and B. adolescentis. The demonstrated system offers a simple and easily adopted platform for examining the physiologic impact of alterations in the intestinal epithelium that occur in the presence of probiotic bacteria and their metabolites.

7.
Adv Biol (Weinh) ; 6(11): e2200129, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35773243

RESUMO

The human colon plays a critical role in fluid and salt absorption and harbors the largest immune compartment. There is a widespread need for in vitro models of human colon physiology with its innate immune system. A method is described to produce a cassette with a network of struts supporting a suspended, non-chemically cross-linked collagen hydrogel scaffold compatible with the co-culture of primary gastrointestinal epithelium and migratory inflammatory cells. The epithelial monolayer cultured on the suspended collagen possesses a population of polarized and differentiated cells similar to that present in vivo. This epithelial layer displays proper barrier function with a transepithelial electrical resistance (TEER) ≥ 1,500 Ω cm2 and an apparent permeability ≤10-5 cm2 s-1 . Immune cells plated on the basal face of the scaffold transmigrated over a period of 24 h to the epithelial layer in response to epithelial production of IL-8 induced by luminal stimulation of Clostridium difficile Toxin A. These studies demonstrate that this in vitro platform possesses a functional primary colonic epithelial layer with an immune cell compartment capable of recruitment in response to pro-inflammatory cues coming from the epithelium.


Assuntos
Colo , Hidrogéis , Humanos , Hidrogéis/farmacologia , Células Cultivadas , Colágeno , Comunicação Celular
8.
J Chem Theory Comput ; 18(2): 851-864, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35084855

RESUMO

Density matrix embedding theory (DMET) formally requires the matching of density matrix blocks obtained from high-level and low-level theories, but this is sometimes not achievable in practical calculations. In such a case, the global band gap of the low-level theory vanishes, and this can require additional numerical considerations. We find that both the violation of the exact matching condition and the vanishing low-level gap are related to the assumption that the high-level density matrix blocks are noninteracting pure-state v-representable (NI-PS-V), which assumes that the low-level density matrix is constructed following the Aufbau principle. To relax the NI-PS-V condition, we develop an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

9.
Adv Healthc Mater ; 10(22): e2101318, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510822

RESUMO

The second messenger, intracellular free calcium (Ca2+ ), acts to transduce mitogenic and differentiation signals incoming to the colonic epithelium. A self-renewing monolayer of primary murine colonic epithelial cells is formed over a soft, transparent hydrogel matrix for the scalable analysis of intracellular Ca2+ transients. Cultures that are enriched for stem/proliferative cells exhibit repetitive, high frequency (≈25 peaks h-1 ), and short pulse width (≈25 s) Ca2+ transients. Upon cell differentiation the transient frequency declines by 50% and pulse width widens by 200%. Metabolites and growth factors that are known to modulate stem cell proliferation and differentiation through Wnt and Notch signaling pathways, including CHIR-99021, N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), bone morphogenetic proteins (BMPs), and butyrate, also modulate Ca2+ oscillation patterns in a consistent manner. Increasing the stiffness of the supportive matrix from 200 Pa to 3 GPa shifts Ca2+ transient patterns toward those resembling differentiated cells. The ability to monitor Ca2+ oscillations with the spatial and temporal resolution offered by this platform, combined with its amenability to high-content screens, provides a powerful tool for investigating real-time communication within a wide range of primary tissues in addition to the colonic epithelium.


Assuntos
Colo , Mucosa Intestinal , Animais , Diferenciação Celular , Epitélio , Camundongos , Transdução de Sinais
10.
Integr Biol (Camb) ; 13(6): 139-152, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33989405

RESUMO

Hyperglycemia is thought to increase production of inflammatory cytokines and permeability of the large intestine. Resulting intestinal inflammation is then often characterized by excess secretion of tumor necrosis factor alpha (TNFα). Thus, hyperglycemia in hospitalized patients suffering from severe trauma or disease is frequently accompanied by TNFα secretion, and the combined impact of these insults on the intestinal epithelium is poorly understood. This study utilized a simple yet elegant model of the intestinal epithelium, comprised of primary human intestinal stem cells and their differentiated progeny, to investigate the impact of hyperglycemia and inflammatory factors on the colonic epithelium. When compared to epithelium cultured under conditions of physiologic glucose, cells under hyperglycemic conditions displayed decreased mucin-2 (MUC2), as well as diminished alkaline phosphatase (ALP) activity. Conditions of 60 mM glucose potentiated secretion of the cytokine IL-8 suggesting that cytokine secretion during hyperglycemia may be a source of tissue inflammation. TNFα measurably increased secretion of IL-8 and IL-1ß, which was enhanced at 60 mM glucose. Surprisingly, intestinal permeability and paracellular transport were not altered by even extreme levels of hyperglycemia. The presence of TNFα increased MUC2 presence, decreased ALP activity, and negatively impacted monolayer barrier function. When TNFα hyperglycemia and ≤30 mM glucose and were combined, MUC2 and ALP activity remained similar to that of TNFα alone, although synergistic effects were seen at 60 mM glucose. An automated image analysis pipeline was developed to assay changes in properties of the zonula occludens-1 (ZO-1)-demarcated cell boundaries. While hyperglycemia alone had little impact on cell shape and size, cell morphologic properties were extraordinarily sensitive to soluble TNFα. These results suggest that TNFα acted as the dominant modulator of the epithelium relative to glucose, and that control of inflammation rather than glucose may be key to maintaining intestinal homeostasis.


Assuntos
Hiperglicemia , Fator de Necrose Tumoral alfa , Colo , Células Epiteliais , Humanos , Mucosa Intestinal
11.
Nat Protoc ; 16(1): 352-382, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299154

RESUMO

The large intestine, with its array of crypts lining the epithelium and diverse luminal contents, regulates homeostasis throughout the body. In vitro crypts formed from primary human intestinal epithelial stem cells on a 3D shaped hydrogel scaffold replicate the functional and architectural features of in vivo crypts. Collagen scaffolding assembly methods are provided, along with the microfabrication and soft lithography protocols necessary to shape these hydrogels to match the dimensions and density of in vivo crypts. In addition, stem-cell scale-up protocols are provided so that even ultrasmall primary samples can be used as starting material. Initially, these cells are seeded as a proliferative monolayer over the shaped scaffold and cultured as stem/proliferative cells to expand them and cover the scaffold surface with the crypt-shaped structures. To convert these immature crypts into fully polarized, functional units with a basal stem cell niche and luminal differentiated cell zone, stable, linear gradients of growth factors are formed across the crypts. This platform supports the formation of chemical gradients across the crypts, including those of growth and differentiation factors, inflammatory compounds, bile and food metabolites and bacterial products. All microfabrication and device assembly steps are expected to take 8 d, with the primary cells cultured for 12 d to form mature in vitro crypts.


Assuntos
Autorrenovação Celular , Colágeno/química , Hidrogéis/química , Mucosa Intestinal/citologia , Alicerces Teciduais/química , Linhagem Celular , Humanos , Engenharia Tecidual/métodos
12.
Curr Opin Biomed Eng ; 13: 94-102, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32095672

RESUMO

Design parameters for microphysiological systems (MPS) are driven by the need for new tools to answer questions focusing on human physiology in a robust and reliable manner. Within this perspective, engineering benchmarks and principles are identified to guide the construction of new devices in the MPS field, with emphasis placed on the design principles common to all tissues, as well as those unique to a subset of tissues. Leading organ replica technologies that recapitulate various functions of the brain, heart, intestine, and lung are highlighted as examples that meet the identified benchmarks and standards, with current barriers for large scale production and commercialization discussed. To reach their full potential and achieve widespread use, MPS will have to be recognized officially by government agencies, and toward this end, considerations of MPS as a potential regulatory tool are presented.

13.
Biofabrication ; 12(1): 015006, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31519008

RESUMO

An oxygen gradient formed along the length of colonic crypts supports stem-cell proliferation at the normoxic crypt base while supporting obligate anaerobe growth in the anoxic colonic lumen. Primary human colonic epithelial cells derived from human gastrointestinal stem cells were cultured within a device possessing materials of tailored oxygen permeability to produce an oxygen-depleted luminal (0.8% ± 0.1% O2) and oxygen-rich basal (11.1% ± 0.5% O2) compartment. This oxygen difference created a stable oxygen gradient across the colonic epithelial cells which remained viable and properly polarized. Facultative and obligate anaerobes Lactobacillus rhamnosus, Bifidobacterium adolescentis, and Clostridium difficile grew readily within the luminal compartment. When formed along the length of an in vitro crypt, the oxygen gradient facilitated cell compartmentalization within the crypt by enhancing confinement of the proliferative cells to the crypt base. This platform provides a simple system to create a physiological oxygen gradient across an intestinal mimic while simultaneously supporting anaerobe co-culture.


Assuntos
Colo/metabolismo , Colo/microbiologia , Técnicas In Vitro/métodos , Oxigênio/metabolismo , Células-Tronco/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proliferação de Células , Células Cultivadas , Colo/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Humanos , Intestinos , Modelos Biológicos , Células-Tronco/citologia
14.
Int J Prosthodont ; 32(4): 349-351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283812

RESUMO

PURPOSE: To compare the tightening torque accuracy of three electronic torque drivers. MATERIALS AND METHODS: Three electronic torque drivers were assessed using two measurement methods-pure output torque (POT) and clinical output torque (COT). For both methods, assessments were performed at set torques of 10, 20, 30, and 40 Ncm, 10 times for each setting, with each driver tested. Appropriate statistical analysis was performed according to data distribution (ie, normal vs non-normal) (α = .05). RESULTS: POT was significantly higher than COT at a set torque of 30 Ncm (P < .001). CONCLUSION: In fastening an implant screw at 30 Ncm, the operator should also consider the output torque generated in the electronic torque driver.


Assuntos
Dente Suporte , Implantes Dentários , Parafusos Ósseos , Torque
15.
Trends Biotechnol ; 37(7): 744-760, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30591184

RESUMO

The development of physiologically relevant intestinal models fueled by breakthroughs in primary cell-culture methods has enabled successful recapitulation of key features of intestinal physiology. These advances, paired with engineering methods, for example incorporating chemical gradients or physical forces across the tissues, have yielded ever more sophisticated systems that enhance our understanding of the impact of the host microbiome on human physiology as well as on the genesis of intestinal diseases such as inflammatory bowel disease and colon cancer. In this review we highlight recent advances in the development and usage of primary cell-derived intestinal models incorporating monolayers, organoids, microengineered platforms, and macrostructured systems, and discuss the expected directions of the field.


Assuntos
Técnicas de Cultura de Células/métodos , Intestinos/fisiologia , Modelos Biológicos , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/tendências , Células Cultivadas , Humanos , Organoides/fisiologia , Engenharia Tecidual/tendências
16.
Anal Chem ; 90(19): 11523-11530, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199234

RESUMO

In vitro models of the human intestinal epithelium derived from primary stem cells are much needed for the study of intestinal immunology in health and disease. Here, we describe an intestinal monolayer cultured on a porous membrane with accessible basal and apical surfaces for assay of intestinal cytokine production in response to stimuli. The system was composed of a differentiated, confluent epithelial monolayer derived from human primary stem cells obtained from small or large intestine. Interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) were the most abundant inflammatory cytokines produced by the intestinal epithelium. The epithelium from all five tested regions of the intestine preferentially secreted into the apical reservoir of the monolayer, with a 26-fold greater concentration of IL-8 present in the apical reservoir of the colonic monolayer relative to that in the basal reservoir. Upon application of tumor-necrosis factor α (TNF-α) to the basal surface of the colonic monolayer, the IL-8 concentration significantly increased in the basal, but not the apical, reservoir. A dose-dependent elevation of IL-8 in the basal reservoir was observed for TNF-α-stimulation of the monolayer but not for an organoid-based platform. To demonstrate the utility of the monolayer system, 88 types of dietary metabolites or compounds were screened for their ability to modulate IL-8 production in the basal reservoir of the intestinal monolayer in the absence or presence of TNF-α. No dietary metabolite or compound caused an increase in IL-8 in the basal reservoir in the absence of TNF-α. After addition of TNF-α to the monolayer, two compounds (butyrate and gallic acid) suppressed IL-8 production, suggesting their potential anti-inflammatory effects, whereas the dietary factor forskolin significantly increased IL-8 production. These results demonstrate that the described human-intestinal-monolayer platform has the potential for assays and screening of metabolites and compounds that alter the inflammatory response of the intestine.


Assuntos
Ensaio de Imunoadsorção Enzimática , Interleucina-8/análise , Células Cultivadas , Quimiocina CCL2/análise , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Porosidade , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/farmacologia
17.
Lab Chip ; 18(15): 2202-2213, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29944153

RESUMO

A simple, in vitro intestinal model recapitulating key aspects of crypt architecture and physiology would facilitate our understanding the impact of drugs, foods and microbial metabolites on the intestine. To address the limitations of previously reported intestinal in vitro platforms, we developed a planar crypt array that replicated the spatial segregation and physiologic responses of primary mouse intestinal epithelial cells in the large intestine. Collagen was coated across an impermeable film possessing an array of microholes creating two regions of distinct stiffness and porosity (above and outside the microholes). Primary mouse colon epithelial cells formed a continuous monolayer across the array with a proliferative cell zone above the microholes and a nonproliferative or differentiated cell region distant from the microholes. Formation of a chemical gradient of growth factors across the array yielded a more complete or in vivo-like cell segregation of proliferative and differentiated cells with cell migration outward from the proliferative cell zone into the differentiated zone to replace apoptotic dying cells much as occurs in vivo. Short chain fatty acids (microbial metabolites) applied to the luminal surface of the crypt array significantly impacted the proliferation and differentiation of the cells replicating the known in vivo effects of these fatty acids. Importantly this planar crypt array was readily fabricated and maintained, easily imaged with properties quantified by microscopy, and compatible with reagent addition to either the luminal or basal fluid reservoirs. The ability to observe simultaneously stem/proliferative and differentiated cell behavior and movement between these two compartments in response to drugs, toxins, inflammatory mediators or microbial metabolites will be of widespread utility.


Assuntos
Diferenciação Celular , Mucosa Intestinal/citologia , Células-Tronco/citologia , Análise Serial de Tecidos/instrumentação , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Desenho de Equipamento , Ácidos Graxos Voláteis/farmacologia , Feminino , Masculino , Camundongos , Células-Tronco/efeitos dos fármacos
18.
Cell Mol Gastroenterol Hepatol ; 5(2): 113-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29693040

RESUMO

BACKGROUND & AIMS: The successful culture of intestinal organoids has greatly enhanced our understanding of intestinal stem cell physiology and enabled the generation of novel intestinal disease models. Although of tremendous value, intestinal organoid culture systems have not yet fully recapitulated the anatomy or physiology of the in vivo intestinal epithelium. The aim of this work was to re-create an intestinal epithelium with a high density of polarized crypts that respond in a physiologic manner to addition of growth factors, metabolites, or cytokines to the basal or luminal tissue surface as occurs in vivo. METHODS: A self-renewing monolayer of human intestinal epithelium was cultured on a collagen scaffold microfabricated with an array of crypt-like invaginations. Placement of chemical factors in either the fluid reservoir below or above the cell-covered scaffolding created a gradient of that chemical across the growing epithelial tissue possessing the in vitro crypt structures. Crypt polarization (size of the stem/proliferative and differentiated cell zones) was assessed in response to gradients of growth factors, cytokines, and bacterial metabolites. RESULTS: Chemical gradients applied to the shaped human epithelium re-created the stem/proliferative and differentiated cell zones of the in vivo intestine. Short-chain fatty acids applied as a gradient from the luminal side confirmed long-standing hypotheses that butyrate diminished stem/progenitor cell proliferation and promoted differentiation into absorptive colonocytes. A gradient of interferon-γ and tumor necrosis factor-α significantly suppressed the stem/progenitor cell proliferation, altering crypt formation. CONCLUSIONS: The in vitro human colon crypt array accurately mimicked the architecture, luminal accessibility, tissue polarity, cell migration, and cellular responses of in vivo intestinal crypts.

19.
Cell Mol Gastroenterol Hepatol ; 5(3): 440-453.e1, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29675459

RESUMO

The relationship between intestinal stem cells (ISCs) and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.

20.
Biomaterials ; 75: 295-304, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26513421

RESUMO

Nanoparticles (NPs) are functionalized with targeting ligands to enable selectively delivering drugs to desired locations in the body. When these functionalized NPs enter the blood stream, plasma proteins bind to their surfaces, forming a protein corona that affects NP uptake and targeting efficiency. To address this problem, new strategies for directing the formation of a protein corona that has targeting capabilities are emerging. Here, we have investigated the feasibility of directing corona composition to promote targeted NP uptake by specific types of cells. We used the well-characterized process of opsonin-induced phagocytosis by macrophages as a simplified model of corona-mediated NP uptake by a desired cell type. We demonstrate that pre-coating silica NPs with gamma-globulins (γ-globulins) produced a protein corona that was enriched with opsonins, such as immunoglobulins. Although immunoglobulins are ligands that bind to receptors on macrophages and elicit phagocytois, the opsonin-rich protein corona did not increase NP uptake by macrophage RAW 264.7 cells. Immunolabeling experiments indicated that the binding of opsonins to their target cell surface receptors was impeded by other proteins in the corona. Thus, corona-mediated NP targeting strategies must optimize both the recruitment of the desired plasma proteins as well as their accessibility and orientation in the corona layer.


Assuntos
Endocitose , Nanopartículas/química , Coroa de Proteína , Albumina Sérica/química , gama-Globulinas/química , Animais , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Humanos , Hidrodinâmica , Camundongos , Microscopia Confocal , Nanopartículas/ultraestrutura , Tamanho da Partícula , Células RAW 264.7 , Receptores Fc/metabolismo , Eletricidade Estática , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...