Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080777

RESUMO

Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination. Therefore, in this study, we embedded micropatterned HA on the surface of PLLA to improve bioactivity while eliminating the risk of HA delamination. An HA pattern was successfully embedded in a PLLA matrix without degeneration of the matrix's mechanical properties, thanks to a transfer technique involving conversion of Mg to HA. Furthermore, patterned HA/PLLA's biological response outperformed that of pure PLLA. These results confirm patterned HA/PLLA as a candidate for wide acceptance in biodegradable load-bearing implant applications.

2.
Environ Sci Technol ; 52(16): 9330-9340, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30001490

RESUMO

TiO2 nanotubes (TNT) have a highly ordered open structure that promotes the diffusion of dioxygen and substrates onto active sites and exhibit high durability against deactivation during the photocatalytic air purification. Herein, we synthesized {001} facet-exposed TiO2 nanotubes (001-TNT) using a new and simple method that can be easily scaled up, and tested them for the photocatalytic removal of volatile organic compounds (VOCs) in both a laboratory reactor and a commercial air cleaner. While the surface of TNT is mainly composed of {101} facet anatase, 001-TNT's outer surface was preferentially aligned with {001} facet anatase. The photocatalytic degradation activity of toluene on 001-TNT was at least twice as high as that of TNT. While the TNT experienced a gradual deactivation during successive cycles of photocatalytic degradation of toluene, the 001-TNT did not exhibit any sign of catalyst deactivation under the same test conditions. Under visible light irradiation, the 001-TNT showed degradation activity for acetaldehyde and formaldehyde, while the TNT did not exhibit any degradation activity for them. The 001-TNT filter was successfully scaled up and installed on a commercial air cleaner. The air cleaner equipped with the 001-TNT filters achieved an average VOCs removal efficiency of 72% (in 30 min of operation) in a 8-m3 test chamber, which satisfied the air cleaner standards protocol (Korea) to be the first photocatalytic air cleaner that passed this protocol.


Assuntos
Nanotubos , Compostos Orgânicos Voláteis , Catálise , República da Coreia , Titânio , Tolueno
3.
Materials (Basel) ; 10(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973984

RESUMO

Magnesium (Mg) has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA) surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group) and the experimental group (HA-Mg group). The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell), BUN (Blood Urea Nitrogen), Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase) and ALT (Alanine Aminotransferase) values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period.

4.
Mater Sci Eng C Mater Biol Appl ; 81: 97-103, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28888023

RESUMO

The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro.


Assuntos
Materiais Revestidos Biocompatíveis/química , Corrosão , Durapatita , Ácido Láctico , Magnésio , Teste de Materiais , Polímeros
5.
J Biomed Mater Res B Appl Biomater ; 105(6): 1636-1644, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27174442

RESUMO

Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017.


Assuntos
Implantes Absorvíveis , Parafusos Ósseos , Durapatita , Magnésio , Teste de Materiais , Animais , Contagem de Células Sanguíneas , Durapatita/química , Durapatita/farmacologia , Magnésio/química , Magnésio/farmacologia , Masculino , Coelhos , Tíbia , Fatores de Tempo
6.
Biomed Mater ; 11(3): 035003, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147643

RESUMO

Magnesium (Mg) and its alloys have gained considerable attention as a promising biomaterial for bioresorbable orthopedic implants, but the corrosion behavior of Mg-based implants is still the major issue for clinical use. In order to improve the corrosion stability and implant-tissue interfaces of these implants, methods for coating Mg have been actively investigated. In this study, poly(ether imide) (PEI)-silica hybrid material was coated on Mg, for the tunable degradation and enhanced biological behavior. Homogeneous PEI-silica hybrid materials with various silica contents were coated on Mg substrates without any cracks, where silica nanoparticles were well dispersed in the PEI matrix without significant particle agglomeration up the 30 vol% silica. The hybrid coatings maintained good adhesion strength of PEI to Mg. The corrosion rate of hybrid-coated Mg was increased along with the increment of the silica content, due to improved hydrophilicity of the hybrid coating layers. Moreover, the biocompatibility of the hybrid-coated Mg specimens was significantly improved, mainly due to the higher Mg ion concentrations associated with faster corrosion, compared to PEI-coated Mg. Therefore, PEI-silica hybrid systems have significant potential as a coating material of Mg for load-bearing orthopedic applications by providing tunable corrosion behavior and enhanced biological performance.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis/química , Imidas/química , Magnésio/química , Polímeros/química , Dióxido de Silício/química , Células 3T3 , Ligas/química , Animais , Corrosão , Concentração de Íons de Hidrogênio , Íons , Teste de Materiais , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Estresse Mecânico , Suporte de Carga
7.
J Mater Sci Mater Med ; 27(2): 34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26704551

RESUMO

The introduction of a protective coating layer to highly corrosive magnesium (Mg) has been proposed as one of the common approaches for improved corrosion resistance of Mg-based implants as load-bearing biomedical applications. However, only few studies have focused on the mechanical stability of the coated Mg under practical conditions where significant deformation of the load-bearing implants is induced during the surgical operation or under physiological environments. Therefore, in this study, we developed a dual coating system composed of an interlayer hydroxyapatite (HA) and a top layer poly-L-lactic acid (PLLA) to improve the coating stability under deformation of Mg alloy (WE43) substrate. The HA interlayer was directly formed on the Mg alloy surface, followed by dip-coating of PLLA. As the interlayer, HA improved the adhesion of PLLA by modulating nano- and microscale roughness, in addition to its inherently good bonding strength to Mg. The flexible and deformable top coating PLLA layer mitigated crack propagation in the HA layer under deformation. Thus, the dual coating layer provided good protection to the underlying WE43 from corrosion regardless of deformation. The enhanced corrosion behavior of dual-coated WE43 exhibited better mechanical and biological performance compared to the non-coated or single-coated WE43. Therefore, this dual coating layer on Mg is expected to accelerate Mg-based applications in biomedical devices.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Elasticidade , Ácido Láctico/química , Magnésio/química , Polímeros/química , Próteses e Implantes , Ligas/química , Animais , Fenômenos Biomecânicos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Teste de Materiais , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Poliésteres , Propriedades de Superfície , Suporte de Carga
8.
J Biomed Mater Res A ; 102(2): 429-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23533169

RESUMO

Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Hidroxiapatitas/química , Implantes Experimentais , Magnésio/química , Teste de Materiais , Osteoblastos/metabolismo , Animais , Linhagem Celular , Corrosão , Camundongos , Osteoblastos/citologia
9.
J Biomater Appl ; 28(4): 617-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23241964

RESUMO

Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.


Assuntos
Durapatita/química , Magnésio/química , Poliésteres/química , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...