Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Front Neuroanat ; 18: 1385932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562955

RESUMO

Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.

2.
J Neurochem ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515326

RESUMO

As persistent elevation of transforming growth factor-ß (TGF-ß) promotes fibrosis of muscles and joints and accelerates disease progression in amyotrophic lateral sclerosis (ALS), we investigated whether inhibition of TGF-ß would be effective against both exacerbations. The effects of TGF-ß and its inhibitor on myoblasts and fibroblasts were tested in vitro and confirmed in vivo, and the dual action of a TGF-ß inhibitor in ameliorating the pathogenic role of TGF-ß in ALS mice was identified. In the peripheral neuromuscular system, fibrosis in the muscles and joint cavities induced by excessive TGF-ß causes joint contracture and muscular degeneration, which leads to motor dysfunction. In an ALS mouse model, an increase in TGF-ß in the central nervous system (CNS), consistent with astrocyte activity, was associated with M1 microglial activity and pro-inflammatory conditions, as well as with neuronal cell death. Treatment with the TGF-ß inhibitor halofuginone could prevent musculoskeletal fibrosis, resulting in the alleviation of joint contracture and delay of motor deterioration in ALS mice. Halofuginone could also reduce glial cell-induced neuroinflammation and neuronal apoptosis. These dual therapeutic effects on both the neuromuscular system and the CNS were observed from the beginning to the end stages of ALS; as a result, treatment with a TGF-ß inhibitor from the early stage of disease delayed the time of symptom exacerbation in ALS mice, which led to prolonged survival.

3.
Front Mol Neurosci ; 17: 1356453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450042

RESUMO

Introduction: Pain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a "black box", where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations. Method: We focused on observing neural activity patterns in the primary somatosensory cortex (S1) of mice using two-photon calcium imaging after injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons. We extracted features related to the ratio of up and down-regulated cells in calcium activity and the correlation level of activity between cells as input data for the ML model. The ML model was validated using a Leave-One-Subject-Out Cross-Validation approach to distinguish between non-pain, pain, and drug-induced analgesic states. Results and discussion: The ML model was designed to classify data into three distinct categories: non-pain, pain, and drug-induced analgesic states. Its versatility was demonstrated by successfully classifying different states across various pain models, including inflammatory and neuropathic pain, as well as confirming its utility in identifying the analgesic effects of drugs like ketoprofen, morphine, and the efficacy of magnolin, a candidate analgesic compound. In conclusion, our ML model surpasses the limitations of previous DL approaches by leveraging manually extracted features. This not only clarifies the decision-making process of the ML model but also yields insights into neuronal activity patterns associated with pain, facilitating preclinical studies of analgesics with higher potential for clinical translation.

4.
Mol Psychiatry ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017229

RESUMO

Two forms of plasticity, synaptic and intrinsic, are neural substrates for learning and memory. Abnormalities in homeostatic plasticity cause severe neuropsychiatric diseases, such as schizophrenia and autism. This suggests that the balance between synaptic transmission and intrinsic excitability is important for physiological function in the brain. Despite the established role of synaptic plasticity between parallel fiber (PF) and Purkinje cell (PC) in fear memory, its relationship with intrinsic plasticity is not well understood. Here, patch clamp recording revealed depression of intrinsic excitability in PC following auditory fear conditioning (AFC). Depressed excitability balanced long-term potentiation of PF-PC synapse to serve homeostatic regulation of PF-evoked PC firing. We then optogenetically manipulated PC excitability during the early consolidation period resulting in bidirectional regulation of fear memory. Fear conditioning-induced synaptic plasticity was also regulated following optogenetic manipulation. These results propose intrinsic plasticity in PC as a novel mechanism of fear memory and elucidate that decreased intrinsic excitability in PC counterbalances PF-PC synaptic potentiation to maintain fear memory in a normal range.

5.
Mol Brain ; 16(1): 72, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848910

RESUMO

The major neuropathologic feature of Parkinson's disease is the presence of widespread intracellular inclusions of α-synuclein known as Lewy bodies. Evidence suggests that these misfolded protein inclusions spread through the brain with disease progression. Changes in synaptic function precede neurodegeneration, and this extracellular α-synuclein can affect synaptic transmission. However, whether and how the spreading of α-synuclein aggregates modulates synaptic function before neuronal loss remains unknown. In the present study, we investigated the effect of intrastriatal injection of α-synuclein preformed fibrils (PFFs) on synaptic activity in the somatosensory cortex using a combination of whole-cell patch-clamp electrophysiology, histology, and Golgi-Cox staining. Intrastriatal PFF injection was followed by formation of phosphorylated α-synuclein inclusions in layer 5 of the somatosensory cortex, leading to a decrease in synapse density, dendritic spines, and spontaneous excitatory post-synaptic currents, without apparent neuronal loss. Additionally, three-dimensional reconstruction of microglia using confocal imaging showed an increase in the engulfment of synapses. Collectively, our data indicate that propagation of α-synuclein through neural networks causes abnormalities in synaptic structure and dynamics prior to neuronal loss.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Doença de Parkinson/patologia , Corpos de Lewy/metabolismo , Sinapses/metabolismo
7.
Mol Brain ; 16(1): 58, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430311

RESUMO

Intrinsic plasticity of the cerebellar Purkinje cell (PC) plays a critical role in motor memory consolidation. However, detailed changes in their intrinsic properties during memory consolidation are not well understood. Here, we report alterations in various properties involved in intrinsic excitability, such as the action potential (AP) threshold, AP width, afterhyperpolarization (AHP), and sag voltage, which are associated with the long-term depression of intrinsic excitability following the motor memory consolidation process. We analyzed data recorded from PCs before and 1, 4, and 24 h after cerebellum-dependent motor learning and found that these properties underwent dynamic changes during the consolidation process. We further analyzed data from PC-specific STIM1 knockout (STIM1PKO) mice, which show memory consolidation deficits, and derived intrinsic properties showing distinct change patterns compared with those of wild-type littermates. The levels of memory retention in the STIM1PKO mice were significantly different compared to wild-type mice between 1 and 4 h after training, and AP width, fast- and medium-AHP, and sag voltage showed different change patterns during this period. Our results provide information regarding alterations in intrinsic properties during a particular period that are critical for memory consolidation.


Assuntos
Consolidação da Memória , Células de Purkinje , Animais , Camundongos , Cerebelo , Potenciais de Ação , Memória , Transtornos da Memória
8.
Exp Neurobiol ; 32(2): 83-90, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37164648

RESUMO

Ca2++ transients can be observed in the distal dendrites of Purkinje cells (PCs) despite their lack of action potential backpropagation. These Ca2++ events in distal dendrites require specific patterns of PC firing, such as complex spikes (CS) or simple spikes (SS) of burst mode. Unlike CS, which can act directly on voltage-gated calcium channels in the dendrites through climbing fiber inputs, the condition that can produce the Ca2++ events in distal dendrites with burst mode SS is poorly understood. Here, we propose the interspike interval threshold (ISIT) for Ca2++ transients in the distal dendrites of PC. We found that to induce the Ca2++ transients in distal dendrites the frequency of spike firing of PC should reach 250 Hz (3 ms ISI). Metabotropic glutamate receptor 1 (mGluR1) activation significantly relieved the ISIT and established cellular conditions in which spike firing with 50 Hz (19 ms ISI) could induce Ca2++ transients in the distal dendrites. In contrast, blocking T-type Ca2++ channels or depleting the endoplasmic reticulum Ca2++ store resulted in a stricter condition in which spike firing with 333 Hz (2 ms ISI) was required. Our findings demonstrate that the PC has strict ISIT for dendritic Ca2++ transients, and this ISIT can be relieved by mGluR1 activation. This strict restriction of ISIT could contribute to the reduction of the signal-to-noise ratio in terms of collecting information by preventing excessive dendritic Ca2++ transients through the spontaneous activity of PC.

9.
Nat Commun ; 14(1): 1486, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932069

RESUMO

For survival, it is crucial for eating behaviours to be sequenced through two distinct seeking and consummatory phases. Heterogeneous lateral hypothalamus (LH) neurons are known to regulate motivated behaviours, yet which subpopulation drives food seeking and consummatory behaviours have not been fully addressed. Here, in male mice, fibre photometry recordings demonstrated that LH leptin receptor (LepR) neurons are correlated explicitly in both voluntary seeking and consummatory behaviours. Further, micro-endoscope recording of the LHLepR neurons demonstrated that one subpopulation is time-locked to seeking behaviours and the other subpopulation time-locked to consummatory behaviours. Seeking or consummatory phase specific paradigm revealed that activation of LHLepR neurons promotes seeking or consummatory behaviours and inhibition of LHLepR neurons reduces consummatory behaviours. The activity of LHLepR neurons was increased via Neuropeptide Y (NPY) which acted as a tonic permissive gate signal. Our results identify neural populations that mediate seeking and consummatory behaviours and may lead to therapeutic targets for maladaptive food seeking and consummatory behaviours.


Assuntos
Fome , Receptores para Leptina , Camundongos , Masculino , Animais , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Comportamento Consumatório , Leptina/metabolismo
10.
Exp Brain Res ; 241(5): 1299-1308, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000203

RESUMO

The vestibulo-ocular reflex (VOR) functions to maintain eye stability during head movement, and VOR gain can be dynamically increased or decreased by gain-up or gain-down adaptation. In this study, we investigated the impact of a differential training paradigm with varying frequencies and amplitudes on the level of VOR adaptation in mice. Training for gain-up (out of phase) or gain-down (in phase) VOR adaptation was applied for 60 min using two protocols: (1) oscillation of a drum and turntable with fixed frequency and differing amplitudes (0.5 Hz/2.5°, 0.5 Hz/5° and 0.5 Hz/10°). (2) Oscillation of a drum and turntable with fixed amplitude and a differing frequency (0.25 Hz/5°, 0.5 Hz/5° and 1 Hz/5°). VOR adaptation occurred distinctively in gain-up and gain-down learning. In gain-up VOR adaptation, the learned increase in VOR gain was greatest when trained with the same frequency and amplitude as the test stimulation, and VOR gain decreased after gain-up training with too high a frequency or amplitude. In gain-down VOR adaptation, the decrease in VOR gain increased as the training frequency or amplitude increased. These results suggest that different mechanisms are, at least in part, involved in gain-up and gain-down VOR adaptation.


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Camundongos , Animais , Reflexo Vestíbulo-Ocular/fisiologia , Adaptação Fisiológica/fisiologia , Movimentos da Cabeça/fisiologia , Aprendizagem
11.
Cell Rep ; 42(4): 112291, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952344

RESUMO

Multiple brain regions are engaged in classical fear conditioning. Despite evidence for cerebellar involvement in fear conditioning, the mechanisms by which cerebellar outputs modulate fear learning and memory remain unclear. We identify a population of deep cerebellar nucleus (DCN) neurons with monosynaptic glutamatergic projections to the lateral parabrachial nucleus (lPBN) (DCN→lPBN neurons) in mice. While optogenetic suppression of DCN→lPBN neurons impairs auditory fear memory, activation of DCN→lPBN neurons elicits freezing behavior only after auditory fear conditioning. Moreover, auditory fear conditioning potentiates DCN-lPBN synapses, and subsequently, auditory cue activates lPBN neurons after fear conditioning. Furthermore, DCN→lPBN neuron activation can replace the auditory cue but not footshock in fear conditioning. These findings demonstrate that cerebellar nuclei modulate auditory fear conditioning via transmitting conditioned stimuli signals to the lPBN. Collectively, our findings suggest that the DCN-lPBN circuit is a part of neuronal substrates within interconnected brain regions underscoring auditory fear memory.


Assuntos
Núcleos Cerebelares , Núcleos Parabraquiais , Camundongos , Animais , Núcleos Cerebelares/fisiologia , Núcleos Parabraquiais/fisiologia , Neurônios/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia
12.
J Neurol Sci ; 444: 120512, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462224

RESUMO

OBJECTIVE: Biomarkers are needed to predict prognosis and disease activity in patients with Guillain-Barré syndrome (GBS). The complement system is a key player in the pathogenesis of GBS. This study aimed to assess the potential utility of serum complement proteins as novel biomarkers in GBS. METHODS: We reviewed the medical records of 76 GBS patients with C3 and C4 measurements during hospitalization between 2010 and 2021. Clinical outcomes were correlated with baseline serum C3, C4, and seven additional predictors: four existing biomarkers (GM1, albumin, immunoglobulin G, neutrophil-lymphocyte ratio) and three clinical factors from the modified Erasmus GBS outcome score model. Five complement activation products (C3a, C4a, C5a, soluble C5b-9, factor Bb) were measured in 35 patients and were compared with C3 and C4 levels. Longitudinal changes in C3 and C4 levels were compared with the disease course in 12 patients. RESULTS: Higher C3, but not C4, was associated with poorer outcomes: lower Medical Research Council sum scores (MRCSS), higher GBS disability score (GBSDS), longer hospitalization, and more frequent treatment-related fluctuations. Age, MRCSS at admission, and baseline serum C3 were significant independent indicators of 1- and 3-month GBSDS. We found that C3 was positively correlated with C3a (r = 0.32) and C5a (r = 0.37), which indicates an activated complement cascade with high C3. Longitudinal change of C3 coincided with clinical severity of the disease course. INTERPRETATION: This study highlights the use of serum C3 as a novel mechanistic biomarker in GBS. Larger prospective studies are needed to validate our findings.


Assuntos
Síndrome de Guillain-Barré , Humanos , Síndrome de Guillain-Barré/diagnóstico , Complemento C3/análise , Prognóstico , Imunoglobulina G , Biomarcadores , Progressão da Doença
13.
Exp Neurobiol ; 31(5): 299-306, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36351840

RESUMO

We aimed to evaluate structural dynamic changes of neurons in the auditory cortex after visual deprivation. We longitudinally tracked dendritic spines for 3 weeks after visual deprivation in vivo using a two-photon microscope. GFP-labeled dendritic spines in the auditory cortex were serially followed after bilateral enucleation. The turnover rate, density, and size of the spines in the dendrites were evaluated 1, 2, and 3 weeks after visual deprivation. The turnover rate of the dendritic spines in the auditory cortex increased at 1 week (20.1±7.3%) after bilateral enucleation compared to baseline (12.5±7.9%); the increase persisted for up to 3 weeks (20.9±11.0%). The spine loss rate was slightly higher than the spine gain rate. The average spine density (number of spines per 1 µm of dendrite) was significantly lower at 2 weeks (2W; 0.22±0.06 1/µm) and 3 W (0.22±0.08 1/µm) post-nucleation compared to baseline (0.026±0.09 1/µm). We evaluated the change of synaptic strength in the stable spines at each time point. The normalized spine size in the auditory cortex was significantly increased after bilateral blindness at 1 W postoperatively (1.36±0.92), 2 W postoperatively (1.40±1.18), and 3 W postoperatively (1.36±0.88) compared to baseline. Sensory deprivation resulted in remodeling of the neural circuitry in the spared cortex, via cross-modal plasticity in the direction of partial breakdown of synapses, and enhanced strength of the remaining synapses.

14.
Exp Neurobiol ; 31(5): 324-331, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36351842

RESUMO

Itch and pain are distinct sensations that share anatomically similar pathways: from the periphery to the brain. Over the last decades, several itch-specific neural pathways and molecular markers have been identified at the peripheral and spinal cord levels. Although the perception of sensation is ultimately generated at the brain level, how the brain separately processes the signals is unclear. The primary somatosensory cortex (S1) plays a crucial role in the perception of somatosensory information, including touch, itch, and pain. In this study, we investigated how S1 neurons represent itch and pain differently. First, we established a spontaneous itch and pain mouse model. Spontaneous itch or pain was induced by intradermal treatment with 5-HT or capsaicin on the lateral neck and confirmed by a selective increase in scratching or wiping-like behavior, respectively. Next, in vivo two-photon calcium imaging was performed in awake mice after four different treatments, including 5-HT, capsaicin, and each vehicle. By comparing the calcium activity acquired during different sessions, we distinguished the cells responsive to itch or pain sensations. Of the total responsive cells, 11% were both responsive, and their activity in the pain session was slightly higher than that in the itch session. Itch- and painpreferred cells accounted for 28.4% and 60.6%, respectively, and the preferred cells showed the lowest activity in their counter sessions. Therefore, our results suggest that S1 uses a multiplexed coding strategy to encode itch and pain, and S1 neurons represent the interaction between itch and pain.

15.
J Integr Neurosci ; 21(5): 131, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137951

RESUMO

BACKGROUND: Although the occurrence of optokinetic reflex (OKR) adaptation after OKR training is well established, the dynamic properties of OKR adaptation has not been fully studied. This study aimed to examine the difference in the amount of OKR adaptation according to OKR training protocols which have different frequency or amplitude of drum oscillation. METHODS: Using C57BL/6N male mice, we induced OKR adaptation by 3 different categories of learning paradigm as follows: (1) Optokinetic drum oscillation for 60 min with same amplitude and different frequency. (2) Optokinetic drum oscillation for 60 min with same frequency and different amplitude. (3) Training with serial combination of different frequency or amplitude. RESULTS: The results show that the amount of OKR adaptation was greater after OKR training with lower frequency or amplitude than that with higher frequency or amplitude. CONCLUSIONS: This finding may suggest that the retinal slip signal with lower-velocity OKR stimulation serves as more precise instructive signal for learning, leading to induction of more efficient training effect. Another interesting finding was that the OKR gain increase tended to be greater after training composed of sequential combination of decreasing frequency or amplitude than that composed of sequential combination of increasing frequency or amplitude. Furthermore, the OKR training with high frequency or amplitude eliminated a part of learning effects which have already formed by previous training. We postulate that the stimulation during training with high frequency or amplitude may implement a disturbing instruction for OKR learning when it is conducted in mice with increased OKR gain after previous OKR training.


Assuntos
Movimentos Oculares , Reflexo , Adaptação Fisiológica/fisiologia , Animais , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Exp Mol Med ; 54(8): 1179-1187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35982300

RESUMO

Chronic pain remains an intractable condition in millions of patients worldwide. Spontaneous ongoing pain is a major clinical problem of chronic pain and is extremely challenging to diagnose and treat compared to stimulus-evoked pain. Although extensive efforts have been made in preclinical studies, there still exists a mismatch in pain type between the animal model and humans (i.e., evoked vs. spontaneous), which obstructs the translation of knowledge from preclinical animal models into objective diagnosis and effective new treatments. Here, we developed a deep learning algorithm, designated AI-bRNN (Average training, Individual test-bidirectional Recurrent Neural Network), to detect spontaneous pain information from brain cellular Ca2+ activity recorded by two-photon microscopy imaging in awake, head-fixed mice. AI-bRNN robustly determines the intensity and time points of spontaneous pain even in chronic pain models and evaluates the efficacy of analgesics in real time. Furthermore, AI-bRNN can be applied to various cell types (neurons and glia), brain areas (cerebral cortex and cerebellum) and forms of somatosensory input (itch and pain), proving its versatile performance. These results suggest that our approach offers a clinically relevant, quantitative, real-time preclinical evaluation platform for pain medicine, thereby accelerating the development of new methods for diagnosing and treating human patients with chronic pain.


Assuntos
Dor Crônica , Aprendizado Profundo , Analgésicos/uso terapêutico , Animais , Encéfalo/diagnóstico por imagem , Cálcio , Dor Crônica/tratamento farmacológico , Humanos , Camundongos
17.
Biomedicines ; 10(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35884938

RESUMO

The primary somatosensory cortex (S1) plays a key role in the discrimination of somatic sensations. Among subdivisions in S1, the dysgranular zone of rodent S1 (S1DZ) is homologous to Brodmann's area 3a of primate S1, which is involved in the processing of noxious signals from the body. However, molecular changes in this region and their role in the pathological pain state have never been studied. In this study, we identified molecular alteration of the S1DZ in a rat model of neuropathic pain induced by right L5 spinal nerve ligation (SNL) surgery and investigated its functional role in pain symptoms. Brain images acquired from SNL group and control group in our previous study were analyzed, and behaviors were measured using the von Frey test, acetone test, and conditioned place preference test. We found that metabotropic glutamate receptor 5 (mGluR5) levels were significantly upregulated in the S1DZ contralateral to the nerve injury in the SNL group compared to the sham group. Pharmacological deactivation of mGluR5 in S1DZ ameliorated symptoms of neuropathic allodynia, which was shown by a significant increase in the mechanical paw withdrawal threshold and a decrease in the behavioral response to cold stimuli. We further confirmed that this treatment induced relief from the tonic-aversive state of chronic neuropathic pain, as a place preference memory associated with the treatment-paired chamber was formed in rats with neuropathic pain. Our data provide evidence that mGluR5 in the S1DZ is involved in the manifestation of abnormal pain sensations in the neuropathic pain state.

18.
Exp Neurobiol ; 31(3): 208-220, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35786642

RESUMO

Hippocampal sharp-wave ripple activity (SWRs) and the associated replay of neural activity patterns are well-known for their role in memory consolidation. This activity has been studied using electrophysiological approaches, as high temporal resolution is required to recognize SWRs in the neuronal signals. However, it has been difficult to analyze the individual contribution of neurons to task-specific SWRs, because it is hard to track neurons across a long time with electrophysiological recording. In this study, we recorded local field potential (LFP) signals in the hippocampal CA1 of freely behaving mice and simultaneously imaged calcium signals in contralateral CA1 to leverage the advantages of both electrophysiological and imaging approaches. We manufactured a custom-designed microdrive array and targeted tetrodes to the left hippocampus CA1 for LFP recording and applied electrical stimulation in the ventral hippocampal commissure (VHC) for closed-loop disruption of SWRs. Neuronal population imaging in the right hippocampal CA1 was performed using a miniature fluorescent microscope (Miniscope) and a genetically encoded calcium indicator. As SWRs show highly synchronized bilateral occurrence, calcium signals of SWR-participating neurons could be identified and tracked in spontaneous or SWR-disrupted conditions. Using this approach, we identified a subpopulation of CA1 neurons showing synchronous calcium elevation to SWRs. Our results showed that SWR-related calcium transients are more disrupted by electrical stimulation than non-SWRrelated calcium transients, validating the capability of the system to detect and disrupt SWRs. Our dual recording method can be used to uncover the dynamic participation of individual neurons in SWRs and replay over extended time windows.

19.
Front Synaptic Neurosci ; 14: 857675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615440

RESUMO

In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 µM) or a high (100 µM) concentration of (RS)-DHPG. We found that 30 µM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 µM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.

20.
Front Cell Neurosci ; 16: 836948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431810

RESUMO

Accumulating evidence indicates that the cerebellum is critically involved in modulating non-motor behaviors, including cognition and emotional processing. Both imaging and lesion studies strongly suggest that the cerebellum is a component of the fear memory network. Given the well-established role of the cerebellum in adaptive prediction of movement and cognition, the cerebellum is likely to be engaged in the prediction of learned threats. The cerebellum is activated by fear learning, and fear learning induces changes at multiple synaptic sites in the cerebellum. Furthermore, recent technological advances have enabled the investigation of causal relationships between intra- and extra-cerebellar circuits and fear-related behaviors such as freezing. Here, we review the literature on the mechanisms underlying the modulation of cerebellar circuits in a mammalian brain by fear conditioning at the cellular and synaptic levels to elucidate the contributions of distinct cerebellar structures to fear learning and memory. This knowledge may facilitate a deeper understanding and development of more effective treatment strategies for fear-related affective disorders including post-traumatic stress or anxiety related disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...