Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(6): e1007947, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579559

RESUMO

Visual systems estimate the three-dimensional (3D) structure of scenes from information in two-dimensional (2D) retinal images. Visual systems use multiple sources of information to improve the accuracy of these estimates, including statistical knowledge of the probable spatial arrangements of natural scenes. Here, we examine how 3D surface tilts are spatially related in real-world scenes, and show that humans pool information across space when estimating surface tilt in accordance with these spatial relationships. We develop a hierarchical model of surface tilt estimation that is grounded in the statistics of tilt in natural scenes and images. The model computes a global tilt estimate by pooling local tilt estimates within an adaptive spatial neighborhood. The spatial neighborhood in which local estimates are pooled changes according to the value of the local estimate at a target location. The hierarchical model provides more accurate estimates of groundtruth tilt in natural scenes and provides a better account of human performance than the local estimates. Taken together, the results imply that the human visual system pools information about surface tilt across space in accordance with natural scene statistics.


Assuntos
Gestão da Informação , Modelos Teóricos , Interface Usuário-Computador , Humanos
2.
Elife ; 72018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29384477

RESUMO

Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world.


Assuntos
Encéfalo/fisiologia , Orientação , Percepção Visual , Simulação por Computador , Voluntários Saudáveis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...