Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271727

RESUMO

Objective. This paper presents a novel approach for addressing the intricate task of diagnosing aortic valve regurgitation (AR), a valvular disease characterized by blood leakage due to incompetence of the valve closure. Conventional diagnostic techniques require detailed evaluations of multi-modal clinical data, frequently resulting in labor-intensive and time-consuming procedures that are vulnerable to varying subjective assessment of regurgitation severity.Approach. In our research, we introduce the multi-view video contrastive network, designed to leverage multiple color Doppler imaging inputs for multi-view video processing. We leverage supervised contrastive learning as a strategic approach to tackle class imbalance and enhance the effectiveness of our feature representation learning. Specifically, we introduce a contrastive learning framework to enhance representation learning within the embedding space through inter-patient and intra-patient contrastive loss terms.Main results. We conducted extensive experiments using an in-house dataset comprising 250 echocardiography video series. Our results exhibit a substantial improvement in diagnostic accuracy for AR compared to state-of-the-art methods in terms of accuracy by 9.60%, precision by 8.67%, recall by 9.01%, andF1-score by 8.92%. These results emphasize the capacity of our approach to provide a more precise and efficient method for evaluating the severity of AR.Significance. The proposed model could quickly and accurately make decisions about the severity of AR, potentially serving as a useful prescreening tool.


Assuntos
Catéteres , Doenças das Valvas Cardíacas , Humanos , Ecocardiografia
2.
IEEE Trans Med Imaging ; 42(1): 196-208, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094984

RESUMO

Prediction of abdominal aortic aneurysm (AAA) growth is of essential importance for the early treatment and surgical intervention of AAA. Capturing key features of vascular growth, such as blood flow and intraluminal thrombus (ILT) accumulation play a crucial role in uncovering the intricated mechanism of vascular adaptation, which can ultimately enhance AAA growth prediction capabilities. However, local correlations between hemodynamic metrics, biological and morphological characteristics, and AAA growth rates present high inter-patient variability that results in that the temporal-spatial biochemical and mechanical processes are still not fully understood. Hence, this study aims to integrate the physics-based knowledge with deep learning with a patch-based convolutional neural network (CNN) approach by incorporating important multiphysical features relating to its pathogenesis for validating its impact on AAA growth prediction. For this task, we observe that the unstructured multiphysical features cannot be directly employed in the kernel-based CNN. To tackle this issue, we propose a parameterization of features to leverage the spatio-temporal relations between multiphysical features. The proposed architecture was tested on different combinations of four features including radius, intraluminal thrombus thickness, time-average wall shear stress, and growth rate from 54 patients with 5-fold cross-validation with two metrics, a root mean squared error (RMSE) and relative error (RE). We conduct extensive experiments on AAA patients, the results show the effect of leveraging multiphysical features and demonstrate the superiority of the presented architecture to previous state-of-the-art methods in AAA growth prediction.


Assuntos
Aneurisma da Aorta Abdominal , Aprendizado Profundo , Trombose , Humanos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal , Hemodinâmica , Trombose/diagnóstico por imagem , Trombose/etiologia , Trombose/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35152371

RESUMO

We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-automated chamber segmentation and function assessment methods have shown great potential for future application in aiding image acquisition, quantification, and suggestion for diagnosis. However, the performance of current DL algorithms have not previously been compared with each other. In addition, the reproducibility of ground-truth annotations which are the basis of these algorithms have not yet been fully validated. We retrospectively enrolled 500 consecutive patients who underwent transthoracic echocardiogram (TTE) from December 2019 to December 2020. Simple U-net, Res-U-net, and Dense-U-net algorithms were compared for the segmentation performances and clinical indices such as left atrial volume (LAV), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), LV mass, and ejection fraction (EF) were evaluated. The inter- and intra-observer variability analysis was performed by two expert sonographers for a randomly selected echocardiographic view in 100 patients (apical 2-chamber, apical 4-chamber, and parasternal short axis views). The overall performance of all DL methods was excellent [average dice similarity coefficient (DSC) 0.91 to 0.95 and average Intersection over union (IOU) 0.83 to 0.90], with the exception of LV wall area on PSAX view (average DSC of 0.83, IOU 0.72). In addition, there were no significant difference in clinical indices between ground truth and automated DL measurements. For inter- and intra-observer variability analysis, the overall intra observer reproducibility was excellent: LAV (ICC = 0.995), LVEDV (ICC = 0.996), LVESV (ICC = 0.997), LV mass (ICC = 0.991) and EF (ICC = 0.984). The inter-observer reproducibility was slightly lower as compared to intraobserver agreement: LAV (ICC = 0.976), LVEDV (ICC = 0.982), LVESV (ICC = 0.970), LV mass (ICC = 0.971), and EF (ICC = 0.899). The three current prominent DL-based fully automated methods are able to reliably perform four-chamber segmentation and quantification of clinical indices. Furthermore, we were able to validate the four cardiac chamber ground-truth annotation and demonstrate an overall excellent reproducibility, but still with some degree of inter-observer variability.

4.
Comput Biol Med ; 141: 105099, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942398

RESUMO

The segmentation of coronary arteries in X-ray images is essential for image-based guiding procedures and the diagnosis of cardiovascular disease. However, owing to the complex and thin structures of the coronary arteries, it is challenging to accurately segment arteries in X-ray images using only a single neural network model. Consequently, coronary artery images obtained by segmentation with a single model are often fragmented, with parts of the arteries missing. Sophisticated post-processing is then required to identify and reconnect the fragmented regions. In this paper, we propose a method to reconstruct the missing regions of coronary arteries using X-ray angiography images. METHOD: We apply an independent convolutional neural network model considering local details, as well as a local geometric prior, for reconnecting the disconnected fragments. We implemented and compared the proposed method with several convolutional neural networks with customized encoding backbones as baseline models. RESULTS: When integrated with our method, existing models improved considerably in terms of similarity with ground truth, with a mean increase of 0.330 of the Dice similarity coefficient in local regions of disconnected arteries. The method is efficient and is able to recover missing fragments in a short number of iterations. CONCLUSION AND SIGNIFICANCE: Owing to the restoration of missing fragments of coronary arteries, the proposed method enables a significant enhancement of clinical impact. The method is general and can simply be integrated into other existing methods for coronary artery segmentation.


Assuntos
Vasos Coronários , Redes Neurais de Computação , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Raios X
5.
J Cardiovasc Imaging ; 29(3): 193-204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080347

RESUMO

Artificial intelligence (AI) is evolving in the field of diagnostic medical imaging, including echocardiography. Although the dynamic nature of echocardiography presents challenges beyond those of static images from X-ray, computed tomography, magnetic resonance, and radioisotope imaging, AI has influenced all steps of echocardiography, from image acquisition to automatic measurement and interpretation. Considering that echocardiography often is affected by inter-observer variability and shows a strong dependence on the level of experience, AI could be extremely advantageous in minimizing observer variation and providing reproducible measures, enabling accurate diagnosis. Currently, most reported AI applications in echocardiographic measurement have focused on improved image acquisition and automation of repetitive and tedious tasks; however, the role of AI applications should not be limited to conventional processes. Rather, AI could provide clinically important insights from subtle and non-specific data, such as changes in myocardial texture in patients with myocardial disease. Recent initiatives to develop large echocardiographic databases can facilitate development of AI applications. The ultimate goal of applying AI to echocardiography is automation of the entire process of echocardiogram analysis. Once automatic analysis becomes reliable, workflows in clinical echocardiographic will change radically. The human expert will remain the master controlling the overall diagnostic process, will not be replaced by AI, and will obtain significant support from AI systems to guide acquisition, perform measurements, and integrate and compare data on request.

6.
Yonsei Med J ; 61(2): 137-144, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31997622

RESUMO

PURPOSE: To evaluate the diagnostic accuracy of a novel on-site virtual fractional flow reserve (vFFR) derived from coronary computed tomography angiography (CTA). MATERIALS AND METHODS: We analyzed 100 vessels from 57 patients who had undergone CTA followed by invasive FFR during coronary angiography. Coronary lumen segmentation and three-dimensional reconstruction were conducted using a completely automated algorithm, and parallel computing based vFFR prediction was performed. Lesion-specific ischemia based on FFR was defined as significant at ≤0.8, as well as ≤0.75, and obstructive CTA stenosis was defined that ≥50%. The diagnostic performance of vFFR was compared to invasive FFR at both ≤0.8 and ≤0.75. RESULTS: The average computation time was 12 minutes per patient. The correlation coefficient (r) between vFFR and invasive FFR was 0.75 [95% confidence interval (CI) 0.65 to 0.83], and Bland-Altman analysis showed a mean bias of 0.005 (95% CI -0.011 to 0.021) with 95% limits of agreement of -0.16 to 0.17 between vFFR and FFR. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 78.0%, 87.1%, 72.5%, 58.7%, and 92.6%, respectively, using the FFR cutoff of 0.80. They were 87.0%, 95.0%, 80.0%, 54.3%, and 98.5%, respectively, with the FFR cutoff of 0.75. The area under the receiver-operating characteristics curve of vFFR versus obstructive CTA stenosis was 0.88 versus 0.61 for the FFR cutoff of 0.80, respectively; it was 0.94 versus 0.62 for the FFR cutoff of 0.75. CONCLUSION: Our novel, fully automated, on-site vFFR technology showed excellent diagnostic performance for the detection of lesion-specific ischemia.


Assuntos
Simulação por Computador , Reserva Fracionada de Fluxo Miocárdico , Idoso , Algoritmos , Área Sob a Curva , Feminino , Humanos , Modelos Lineares , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
7.
Sci Rep ; 8(1): 6640, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703900

RESUMO

We characterized the microstructural response of the myocardium to cardiovascular disease using diffusion tensor imaging (DTI) and performed histological validation by intact, un-sectioned, three-dimensional (3D) histology using a tissue-clearing technique. The approach was validated in normal (n = 7) and ischemic (n = 8) heart failure model mice. Whole heart fiber tracking using DTI in fixed ex-vivo mouse hearts was performed, and the hearts were processed with the tissue-clearing technique. Cardiomyocytes orientation was quantified on both DTI and 3D histology. Helix angle (HA) and global HA transmurality (HAT) were calculated, and the DTI findings were confirmed with 3D histology. Global HAT was significantly reduced in the ischemic group (DTI: 0.79 ± 0.13°/% transmural depth [TD] and 3D histology: 0.84 ± 0.26°/%TD) compared with controls (DTI: 1.31 ± 0.20°/%TD and 3D histology: 1.36 ± 0.27°/%TD, all p < 0.001). On direct comparison of DTI with 3D histology for the quantitative assessment of cardiomyocytes orientation, significant correlations were observed in both per-sample (R2 = 0.803) and per-segment analyses (R2 = 0.872). We demonstrated the capability and accuracy of DTI for mapping cardiomyocytes orientation by comparison with the intact 3D histology acquired by tissue-clearing technique. DTI is a promising tool for the noninvasive characterization of cardiomyocytes architecture.


Assuntos
Imagem de Tensor de Difusão/métodos , Imageamento Tridimensional/métodos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...