Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(11): 5687-5697, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38883428

RESUMO

Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multielectron cathode materials. Most anion redox materials still face the problems of slow kinetics and large voltage hysteresis. One potential solution to reduce voltage hysteresis is to increase the covalency of the metal-ligand bonds. By substituting Mn into the electrochemically inert Li1.33Ti0.67S2 (Li2TiS3), anion redox can be activated in the Li1.33-2y/3Ti0.67-y/3Mn y S2 (y = 0-0.5) series. Not only do we observe substantial anion redox, but the voltage hysteresis is significantly reduced, and the rate capability is dramatically enhanced. The y = 0.3 phase exhibits excellent rate and cycling performance, maintaining 90% of the C/10 capacity at 1C, which indicates fast kinetics for anion redox. X-ray absorption spectroscopy (XAS) shows that both the cation and anion redox processes contribute to the charge compensation. We attribute the drop in hysteresis and increase in rate performance to the increased covalency between the metal and the anion. Electrochemical signatures suggest the anion redox mechanism resembles holes on the anion, but the S K-edge XAS data confirm persulfide formation. The mechanism of anion redox shows that forming persulfides can be a low hysteresis, high rate capability mechanism enabled by the appropriate metal-ligand covalency. This work provides insights into how to design cathode materials with anion redox to achieve fast kinetics and low voltage hysteresis.

2.
J Am Chem Soc ; 145(24): 13312-13325, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294168

RESUMO

Next-generation batteries based on sustainable multivalent working ions, such as Mg2+, Ca2+, or Zn2+, have the potential to improve the performance, safety, and capacity of current battery systems. Development of such multivalent ion batteries is hindered by a lack of understanding of multivalent ionics in solids, which is crucial for many aspects of battery operation. For instance, multivalent ionic transport was assumed to be correlated with electronic transport; however, we have previously shown that Zn2+ can conduct in electronically insulating ZnPS3 with a low activation energy of 350 meV, albeit with low ionic conductivity. Here, we show that exposure of ZnPS3 to environments with water vapor at different relative humidities results in room-temperature conductivity increases of several orders of magnitude, reaching as high as 1.44 mS cm-1 without decomposition or structural changes. We utilize impedance spectroscopy with ion selective electrodes, ionic transference number measurements, and deposition and stripping of Zn metal, to confirm that both Zn2+ and H+ act as mobile ions. The contribution from Zn2+ to the ionic conductivity in water vapor exposed ZnPS3 is high, representing superionic Zn2+ conduction. The present study demonstrates that it is possible to enhance multivalent ion conduction of electronically insulating solids as a result of water adsorption and highlights the importance of ensuring that increased conductivity in water vapor exposed multivalent ion systems is in fact due to mobile multivalent ions and not solely H+.

3.
J Control Release ; 352: 472-484, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309098

RESUMO

Patients with wet age-related macular degeneration (AMD) require intravitreal injections of bevacizumab (Bev) or other drugs, often on a monthly basis, which is a burden on the healthcare system. Here, we developed an in-situ forming hydrogel comprised of Bev and hyaluronic acid (HA) crosslinked with poly(ethylene glycol) diacrylate for slow release of Bev after injection into the suprachoroidal space (SCS) of the eye using a microneedle. Liquid Bev formulations were cleared from SCS within 5 days, even when formulated with high viscosity, unless Bev was conjugated to a high molecular-weight HA (2.6 MDa), which delayed clearance until 1 month. To extend release to 6 months, we synthesized in-situ forming Bev-HA hydrogel initially as a low-viscosity mixture suitable for injection and flow in the SCS to cover a large area extending to the posterior pole of the eye where the macula is located in humans. Within 1 h after injection, Bev and HA were crosslinked, which retained Bev for slow release as the hydrogel biodegraded. In vivo studies in the rabbit eye reported Bev release for >6 months, depending on gel formulation and Bev assay. The in-situ forming Bev-HA hydrogel was well tolerated, as assessed by clinical exam, fundus imaging, histological analysis, and intraocular pressure measurement. We conclude that Bev released from an in-situ forming hydrogel may enable long-acting treatments of AMD and other posterior ocular indications.


Assuntos
Efusões Coroides , Hidrogéis , Animais , Humanos , Coelhos , Inibidores da Angiogênese , Bevacizumab , Injeções Intravítreas , Ácido Hialurônico , Sistemas de Liberação de Medicamentos/métodos
4.
J Am Chem Soc ; 144(23): 10119-10132, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653701

RESUMO

Secondary Li-ion batteries have enabled a world of portable electronics and electrification of personal and commercial transportation. However, the charge storage capacity of conventional intercalation cathodes is reaching the theoretical limit set by the stoichiometry of Li in the fully lithiated structure. Increasing the Li:transition metal ratio and consequently involving structural anions in the charge compensation, a mechanism termed anion redox, is a viable method to improve storage capacities. Although anion redox has recently become the front-runner as a next-generation storage mechanism, the concept has been around for quite some time. In this perspective, we explore the contribution of anions in charge compensation mechanisms ranging from intercalation to conversion and the hybrid mechanisms between. We focus our attention on the redox of S because the voltage required to reach S redox lies within the electrolyte stability window, which removes the convoluting factors caused by the side reactions that plague the oxides. We highlight examples of S redox in cathode materials exhibiting varying degrees of anion involvement with a particular focus on the structural effects. We call attention to those with intermediate anion contribution to redox and the hybrid intercalation- and conversion-type structural mechanism at play that takes advantage of the positives of both mechanistic types to increase storage capacity while maintaining good reversibility. The hybrid mechanisms often invoke the formation of persulfides, and so a survey of binary and ternary materials containing persulfide moieties is presented to provide context for materials that show thermodynamically stable persulfide moieties.

5.
ACS Appl Mater Interfaces ; 13(1): 671-680, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356090

RESUMO

Mg batteries are attractive next-generation energy storage systems due to their high natural abundance, inexpensive cost, and high theoretical capacity compared to conventional Li-ion based systems. The high energy density is achieved by electrodeposition and stripping of a Mg metal anode and requires the development of effective electrolytes enabled by a mechanistic understanding of the charge-transfer mechanism. The magnesium aluminum chloride complex (MACC) electrolyte is a good model system to study the mechanism as the solution phase speciation is known. Previously, we reported that minor addition of Mg(HMDS)2 to the MACC electrolyte causes significant improvement in the Mg deposition and stripping voltammetry resulting in good Coulombic efficiency on cycle one and, therefore, negating the need for electrochemical conditioning. To determine the cause of the improved electrochemistry, here we probe the speciation of the electrolyte after Mg(HMDS)2 addition using Raman spectroscopy, 27Al nuclear magnetic resonance spectroscopy, and 1H-29Si heteronuclear multiple bond correlation spectroscopy on MACC + Mg(HMDS)2 at various Mg(HMDS)2 concentrations. Mg(HMDS)2 scavenges trace H2O, but it also reacts with MACC complexes, namely, AlCl4-, to form free Cl-. We suggest that although both the removal of H2O and the formation of free Cl- improve electrochemistry by altering the speciation at the interface, the latter has a profound effect on electrodeposition and stripping of Mg.

6.
ACS Appl Mater Interfaces ; 12(5): 5226-5233, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31825595

RESUMO

Mg-based batteries are an attractive next-generation energy storage chemistry due to the high natural abundance and inexpensive cost of Mg, along with the high theoretical energy density compared to that of conventional Li-ion chemistry. The greater energy density is predicated on a Mg metal anode, and pathways to achieving reversible Mg electrodeposition and stripping are reliant on the development of Mg electrolytes. Although Mg electrolyte chemistry has advanced significantly from the reactive Grignards of the 1920s to the carboranes of this decade, there remains significant challenges in correlating the Mg metal anode electrochemistry with the composition of the electrolyte salts as a result of the complicated interface of Mg metal and the electrolyte. To probe the effect of the interface on Mg electrodeposition, we turn to an electrolyte with a known solution-phase composition: the magnesium aluminum chloride complex (MACC) electrolyte. The MACC electrolyte requires electrolytic conditioning to support reversible Mg electrodeposition and stripping. Here, we show that a small concentration (2-5 mM) of Mg(HMDS)2 with respect to the MACC electrolyte salts suppresses Al3+ deposition and promotes reversible Mg electrodeposition and stripping in the first cycle. The significant effect of a small concentration of additive is attributed to changes to the electrode interface. The impact of the Mg interface on the observed electrochemical performance is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...