Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(31): e2400687121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042677

RESUMO

The seemingly straightforward task of tying one's shoes requires a sophisticated interplay of joints, muscles, and neural pathways, posing a formidable challenge for researchers studying the intricacies of coordination. A widely accepted framework for measuring coordinated behavior is the Haken-Kelso-Bunz (HKB) model. However, a significant limitation of this model is its lack of accounting for the diverse variability structures inherent in the coordinated systems it frequently models. Variability is a pervasive phenomenon across various biological and physical systems, and it changes in healthy adults, older adults, and pathological populations. Here, we show, both empirically and with simulations, that manipulating the variability in coordinated movements significantly impacts the ability to change coordination patterns-a fundamental feature of the HKB model. Our results demonstrate that synchronized bimanual coordination, mirroring a state of healthy variability, instigates earlier transitions of coordinated movements compared to other variability conditions. This suggests a heightened adaptability when movements possess a healthy variability. We anticipate our study to show the necessity of adapting the HKB model to encompass variability, particularly in predictive applications such as neuroimaging, cognition, skill development, biomechanics, and beyond.


Assuntos
Movimento , Desempenho Psicomotor , Humanos , Masculino , Feminino , Desempenho Psicomotor/fisiologia , Adulto , Movimento/fisiologia , Fenômenos Biomecânicos , Adulto Jovem , Mãos/fisiologia
3.
Comput Struct Biotechnol J ; 24: 281-291, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38644928

RESUMO

All people have a fingerprint that is unique to them and persistent throughout life. Similarly, we propose that people have a gaitprint, a persistent walking pattern that contains unique information about an individual. To provide evidence of a unique gaitprint, we aimed to identify individuals based on basic spatiotemporal variables. 81 adults were recruited to walk overground on an indoor track at their own pace for four minutes wearing inertial measurement units. A total of 18 trials per participant were completed between two days, one week apart. Four methods of pattern analysis, a) Euclidean distance, b) cosine similarity, c) random forest, and d) support vector machine, were applied to our basic spatiotemporal variables such as step and stride lengths to accurately identify people. Our best accuracy (98.63%) was achieved by random forest, followed by support vector machine (98.40%), and the top 10 most similar trials from cosine similarity (98.40%). Our results clearly demonstrate a persistent walking pattern with sufficient information about the individual to make them identifiable, suggesting the existence of a gaitprint.

4.
Sci Data ; 10(1): 867, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052819

RESUMO

An ongoing thrust of research focused on human gait pertains to identifying individuals based on gait patterns. However, no existing gait database supports modeling efforts to assess gait patterns unique to individuals. Hence, we introduce the Nonlinear Analysis Core (NONAN) GaitPrint database containing whole body kinematics and foot placement during self-paced overground walking on a 200-meter looping indoor track. Noraxon Ultium MotionTM inertial measurement unit (IMU) sensors sampled the motion of 35 healthy young adults (19-35 years old; 18 men and 17 women; mean ± 1 s.d. age: 24.6 ± 2.7 years; height: 1.73 ± 0.78 m; body mass: 72.44 ± 15.04 kg) over 18 4-min trials across two days. Continuous variables include acceleration, velocity, position, and the acceleration, velocity, position, orientation, and rotational velocity of each corresponding body segment, and the angle of each respective joint. The discrete variables include an exhaustive set of gait parameters derived from the spatiotemporal dynamics of foot placement. We technically validate our data using continuous relative phase, Lyapunov exponent, and Hurst exponent-nonlinear metrics quantifying different aspects of healthy human gait.


Assuntos
Marcha , Caminhada , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Fenômenos Biomecânicos , , Extremidade Inferior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA