Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244873

RESUMO

Rapid industrial growth and urbanization have resulted in a significant rise in environmental pollution issues, particularly indoor air pollutants. As a result, it is crucial to design and develop technologies and/or catalysts that are not only cost-effective but also promising high performance and practical applicability. However, achieving this goal has been so far remained a challenging task. Herein, a series of transition metal M - TiO2 (M = W, Fe, Mn) nanocrystals was prepared for photocatalytic degradation of volatile organic compounds (VOCs), i.e., toluene. Of the nanocomposites tested, W-TiO2 showed significantly improved photocatalytic activity for VOC degradation under UV irradiation compared to the others. In particular, the optimized W dopant amount of 0.5 wt% resulted in the outstanding degradation performance of toluene (96%) for the obtained W-TiO2(0.5%) nanocomposite. Moreover, W-TiO2(0.5%) nanocomposite exhibited good stability for 32 h working under high toluene concentration (10 ppm) compared to the pristine TiO2. The current work demonstrates the potential usage of M - TiO2 nanocrystals, particularly W-TiO2(0.5%), as a promising photocatalyst for efficient VOCs degradation.


Assuntos
Poluentes Atmosféricos , Nanocompostos , Titânio/química , Raios Ultravioleta , Tolueno/química , Nanocompostos/química , Catálise , Poluentes Atmosféricos/química
2.
Mar Environ Res ; 185: 105876, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645987

RESUMO

Humans have been contributing adversely to greenhouse gas emissions by generating a vast amount of CO2, primarily causing climate change. Nature-based climate solutions, consisting of both terrestrial and marine ecosystems, are tremendous potential for sequestering and storing significant amounts of carbon, which can help to slow the progression of climate change. In this study, we use a carbon balance model to simulate the carbon sequestration rate and carbon stored in bare tidal flat (BTF) areas along Korea's west and south coasts from 2018 to 2050. Furthermore, the percentage of potential carbon sources deposited at BTF sites was calculated using a two-terminal mixing model and δ13C data. The carbon deposited on the BTF areas is the result of lateral carbon transport from upslope terrestrial regions as well as marine sources. Based on the δ13C isotope, this study classified potential carbon sources in BTFs sediment into two categories: terrestrial and marine. The results indicate that the proportion of organic carbon contribution from terrestrial sources ranged from 7.63% to 49% in the BTF studied areas. We discuss the validity of projection which was investigated over three years, from 2018 to 2020. A preliminary conclusion is that future carbon storage at BTF sites will increase significantly. Carbon accumulation increases linearly over time in nearly all areas studied, with carbon sequestration rates ranging from 0.053 to 0.623 (MgC ha-1 yr-1). This study found that a significant amount of carbon is sequestered for a long time in the BTF regions based on model simulation results. In addition, it also contributes to projects that seek to promote and conserve these climate benefits by providing estimates of carbon storage in coastal BTFs that can be included in NDCs for the Paris Agreement.


Assuntos
Carbono , Ecossistema , Humanos , Sequestro de Carbono , Mudança Climática
3.
Environ Sci Process Impacts ; 24(12): 2191-2216, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36278886

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting worldwide death toll have prompted worries regarding its transmission mechanisms. Direct, indirect, and droplet modes are the basic mechanisms of transmission. SARS-CoV-2 spreads by respiratory droplets (size range >10 µm size ranges), aerosols (5 µm), airborne, and particulate matter. The rapid transmission of SARS-CoV-2 is due to the involvement of tiny indoor air particulate matter (PM2.5), which functions as a vector. SARS-CoV-2 is more contagious in the indoor environment where particulate matter floats for a longer period and greater distances. Extended residence time in the environment raises the risk of SARS-CoV-2 entering the lower respiratory tract, which may cause serious infection and possibly death. To decrease viral transmission in the indoor environment, it is essential to catch and kill the SARS-CoV-2 virus and maintain virus-free air, which will significantly reduce viral exposure concerns. Therefore, effective air filters with anti-viral, anti-bacterial, and anti-air-pollutant characteristics are gaining popularity recently. It is essential to develop cost-effective materials based on nanoparticles and metal-organic frameworks in order to lower the risk of airborne transmission in developing countries. A diverse range of materials play an important role in the manufacturing of effective air filters. We have summarized in this review article the basic concepts of the transmission routes of SARS-CoV-2 virus and precautionary measures using air purifiers with efficient materials-based air filters for the indoor environment. The performance of air-filter materials, challenges and alternative approaches, and future perspectives are also presented. We believe that air purifiers fabricated with highly efficient materials can control various air pollutants and prevent upcoming pandemics.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Aerossóis e Gotículas Respiratórios , Material Particulado/análise , Fatores de Risco
4.
Korean J Chem Eng ; 39(4): 954-962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153359

RESUMO

COVID-19 has drawn great attention on the necessity for establishing pathogen-free indoor air. This paper offers an insight into the potential application of a multi-purpose filter to remove fine particulates and disinfect pathogens using melamine sponge with a copper-organic framework. In-situ growth dip coating method was applied to coat Cu-based coordination polymer particle (Cu-CPP) on melamine sponge (MS). The integration of Cu-CPPs with high crystallinity and highly active surface area (1,318.1 m2/g) enabled Cu-CPP/MS to have an excellent capture rate (99.66%) and an instant disinfection rate of 99.54% for Escherichia coli. Electrostatic attraction seemed to play a crucial role in capturing negative-charged pathogens effectively by positive charges on Cu-CPP arising from unbalanced copper ions in Cu-CPP. Disinfection of pathogens was mainly attributed to catalytically active Cu2+ sites. Organic ligand played an important role in bridging and maintaining Cu2+ ions within the framework. This study highlights the design of a new capture-and-disinfection (CDS) air filter system for pathogens using Cu-CPP/MS. It can be applied as a substitute for conventional high-efficiency particulate air (HEPA) filters. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s11814-021-1000-4 and is accessible for authorized users.

5.
Int J Stroke ; 17(6): 654-660, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34427474

RESUMO

OBJECTIVE: Many epidemiological studies have observed the association of air pollutant exposure with the onset, progression, and mortality of stroke. The aim of this study was to investigate the associations of air pollutants, including SO2, NO2, O3, CO, and PM10, with stroke according to exposure duration. METHODS: Data from the Korean National Health Insurance Service-Health Screening Cohort from 2002 to 2015 were obtained. The 21,240 patients who were admitted for or died due to stroke were 1:4 matched for age, sex, income, and region of residence with 84,960 control participants. The meteorological factors of mean, highest, and lowest temperatures; relative humidity; ambient atmospheric pressure; and air pollutant concentrations (SO2, NO2, O3, CO, and PM10) were analyzed to determine their associations with stroke. The odds ratios for stroke after exposure to each meteorological factor and air pollutant at 7 and 30 days were calculated in the stroke and control groups. Subgroup analyses were conducted according to age, sex, income, and region of residence. RESULTS: The odds ratio associated with seven days of exposure to CO was 1.16 (95% CI = 1.04-1.31) in stroke patients. For 30 days of exposure, the odds ratio associated with CO was 1.16 (95% CI = 1.02-1.32) in stroke patients. Seven and 30 days of NO2 exposure were inversely associated with stroke. The odds ratio associated with seven days of exposure to O3 was 1.16 (95% CI = 1.01-1.32) in ischemic stroke patients. Both ischemic and hemorrhagic stroke had negative associations with 7 and 30 days of NO2 exposure. CONCLUSION: Both short- and long-term exposure to CO were related to stroke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Acidente Vascular Cerebral , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Humanos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/epidemiologia
6.
J Nanosci Nanotechnol ; 21(7): 3764-3768, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715688

RESUMO

The demand for alternative energy is increasing rapidly because of global warming and the depletion of fossil fuels. Gasification is a technology that produces gaseous fuels through the incomplete combustion of waste or biomass. The introduction of a catalyst during gasification may increase the production of H2 and reduce tar formation. In this study, the catalytic gasification of rice hulls was carried out using a fluidized gasifier. To improve the gas yield and reduce tar, municipal solid waste incineration bottom ash (IBA) having nanoporosity was introduced as a substitute for the fluidized bed material. Gasification was carried out at 800 °C, and the flow materials were silica sand, dolomite, and incineration bottom ash. The equivalence ratio, which is the ratio of oxygen supplied to oxygen required for complete combustion, was set to 0.3. The application of alternate fluidized bed materials (dolomite and incineration bottom ash) was effective in improving the hydrogen yield and tar reduction. This was attributed to the high Ca and Mg contents in dolomite and incineration bottom ash. Therefore, it is expected that IBA can be utilized as a catalytic fluidized bed material to replace silica sand.


Assuntos
Incineração , Oryza , Catálise , Cinza de Carvão , Resíduos Sólidos
7.
Sci Rep ; 11(1): 5108, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658616

RESUMO

Previous studies have suggested an increased risk of ischemic heart disease related to air pollution. This study aimed to explore both the short-term and long-term effects of air pollutants on the risk of ischemic heart disease after adjusting for meteorological factors. The Korean National Health Insurance Service-Health Screening Cohort from 2002 to 2013 was used. Overall, 2155 participants with ischemic heart disease and 8620 control participants were analyzed. The meteorological data and air pollution data, including SO2 (ppm), NO2 (ppm), O3 (ppm), CO (ppm), and particulate matter (PM)10 (µg/m3), were analyzed using conditional logistic regression. Subgroup analyses were performed according to age, sex, income, and region of residence. One-month exposure to SO2 was related to 1.36-fold higher odds for ischemic heart disease (95% confidence interval [95% CI] 1.06-1.75). One-year exposure to SO2, O3, and PM10 was associated with 1.58- (95% CI 1.01-2.47), 1.53- (95% CI 1.27-1.84), and 1.14 (95% CI 1.02-1.26)-fold higher odds for ischemic heart disease. In subgroup analyses, the ≥ 60-year-old group, men, individuals with low income, and urban groups demonstrated higher odds associated with 1-month exposure to SO2. Short-term exposure to SO2 and long-term exposure to SO2, O3, and PM10 were related to ischemic heart disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Monóxido de Carbono/efeitos adversos , Monóxido de Carbono/análise , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Conceitos Meteorológicos , Pessoa de Meia-Idade , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Pobreza , República da Coreia/epidemiologia , Fatores de Risco , Dióxido de Enxofre/efeitos adversos , Dióxido de Enxofre/análise , Fatores de Tempo , População Urbana
8.
Sci Total Environ ; 757: 143960, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33321334

RESUMO

Previous studies have suggested an increased risk of depression related to air pollutants. This study investigated the relationship of air pollutant exposure and meteorological factors with depression. The Korean National Health Insurance Service-Health Screening Cohort from 2002 to 2013 was analyzed. In total, 25,589 depression participants were 1:4 matched with 102,356 control participants for age, sex, income, and region of residence. Depression was defined based on a diagnosis (ICD-10: F31-33) by a psychiatric physician. Meteorological factors and air pollutants including sulfur dioxide (SO2) (ppm), nitrogen dioxide (NO2) (ppm), ozone (O3) (ppm), carbon monoxide (CO) (ppm), and particulate matter with an aerodynamic diameter <10 µm (PM10) (µg/m3) during the 30 days and 365 days before the index date were analyzed for associations with depression using conditional logistic regression. Subgroup analyses were performed according to age, sex, income, and region of residence. The odds ratios (ORs) for depression were 1.05 (95% CI = 1.02-1.08) at 365 days for 1 h less of sunshine. The ORs for depression were 1.02 (95% CI = 1.01-1.03) and 1.03 (95% CI = 1.00-1.05) at 30 days and 365 days for PM10 (10 µg/m3), respectively. The ORs for depression were 1.18 (95% CI = 1.04-1.35) and 1.25 (95% CI = 1.07-1.47) at 30 days and 365 days for CO (ppm), respectively. In the subgroup analyses, the overall results were consistent. However, statistical significance diminished in the younger, high-income, and urban resident subgroups. Both short- and long-term exposure to PM10 and CO and a reduced duration of sunshine were related to an increased risk of depression.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Estudos de Casos e Controles , Depressão/epidemiologia , Exposição Ambiental , Humanos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Enxofre/análise , Luz Solar
9.
Environ Sci Technol ; 54(17): 10797-10807, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786588

RESUMO

Achievement of the 1.5 °C limit for global temperature increase relies on the large-scale deployment of carbon dioxide removal (CDR) technologies. In this article, we explore two CDR technologies: soil carbon sequestration (SCS), and carbon capture and storage (CCS) integrated with cellulosic biofuel production. These CDR technologies are applied as part of decentralized biorefinery systems processing corn stover and unfertilized switchgrass grown in riparian zones in the Midwestern United States. Cover crops grown on corn-producing lands are chosen from the SCS approach, and biogenic CO2 in biorefineries is captured, transported by pipeline, and injected into saline aquifers. The decentralized biorefinery system using SCS, CCS, or both can produce carbon-negative cellulosic biofuels (≤-22.2 gCO2 MJ-1). Meanwhile, biofuel selling prices increase by 15-45% due to CDR costs. Economic incentives (e.g., cover crop incentives and/or a CO2 tax credit) can mitigate price increases caused by CDR technologies. A combination of different CDR technologies in decentralized biorefinery systems is the most efficient method for greenhouse gas (GHG) mitigation, and its total GHG mitigation potential in the Midwest is 0.16 GtCO2 year-1.


Assuntos
Biocombustíveis , Gases de Efeito Estufa , Agricultura , Produtos Agrícolas , Efeito Estufa , Meio-Oeste dos Estados Unidos
10.
Bioresour Technol ; 302: 122896, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32018088

RESUMO

This study assesses the role of spatial-resolution and spatial-variations in environmental impacts estimation and decision-making for corn-stover harvesting to produce biofuels. Geospatial corn-stover yields and environmental impacts [global warming potential (GWP), eutrophication, and soil-loss] dataset for two study areas in Wisconsin and Michigan were generated through Environmental Policy Integrated Climate (EPIC) model and aggregated at different spatial-resolutions (i.e., 100; 1000; 10,000 ha). For each spatial-resolution, decision-making was accomplished using an optimization routine to minimize different environmental impacts associated with harvesting stover to meet varied biomass demands. The results of the study showed that selective harvesting at higher-resolution (or lower-aggregation level) can result in significantly lower environmental impacts, especially at low stover demand levels. Additionally, the increased spatial resolution had more impact in minimizing the environmental impacts of corn stover harvest under a more variable landscape such as terrains and its influences are more pronounced for soil-loss and eutrophication potential compared to GWP.


Assuntos
Biocombustíveis , Solo , Biomassa , Meio Ambiente , Zea mays
11.
Environ Sci Technol ; 53(5): 2288-2294, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730719

RESUMO

The Renewable Fuel Standard (RFS) program specifies a greenhouse gas (GHG) reduction threshold for cellulosic biofuels, while the Low Carbon Fuel Standard (LCFS) program in California does not. Here, we investigate the effects of the GHG threshold under the RFS on projected GHG savings from two corn stover-based biofuel supply chain systems in the United States Midwest. The analysis is based on a techno-economic framework that minimizes ethanol selling price. The GHG threshold lowers the lifecycle GHG of ethanol: 34.39 ± 4.92 gCO2 MJ-1 in the RFS-compliant system and 46.30 ± 10.05 gCO2 MJ-1 in the non RFS-compliant system. However, hypothetical biorefinery systems complying with the RFS will not process the more GHG-intensive corn stover, and thus much less biofuel will be produced compared to the non RFS-compliant system. Thus, taken as a whole, the non RFS-compliant system would achieve more GHG savings than an RFS-compliant system: 10.7 TgCO2 year-1 in the non RFS-compliant system compared with 4.4 TgCO2 year-1 in the RFS-compliant system. These results suggest that the current RFS GHG reduction threshold may not be the most efficient way to carry out the purposes of the Energy Security and Independence Act in the corn stover-based biofuel system: relaxing the threshold could actually increase the overall GHG savings from corn stover-based biofuels. Therefore, the LCFS-type regulatory approach is recommended for the corn stover-based cellulosic biofuel system under the RFS program. In addition, our calculation of the GHG balance for stover-based biofuel accounts for SOC losses, while the current RFS estimates do not include effects on SOC.


Assuntos
Biocombustíveis , Gases de Efeito Estufa , California , Efeito Estufa , Estados Unidos , Zea mays
12.
J Nanosci Nanotechnol ; 18(2): 1423-1426, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448604

RESUMO

The catalytic pyrolysis of two types of lignin, organosolv and klason lignin, which were extracted from miscanthus, over Al-SBA-15 was carried out using a thermogravimetric (TG) analyzer and a pyroyzer-gas chromatography/mass spectrometry (Py-GC/MS). Although Al-SBA-15 has weak acidity, the large molecular phenolic pyrolyzates of lignin were converted effectively into small molecular phenols and aromatic hydrocarbons due to the large pore size of Al-SBA-15. Compared to klason lignin, organosolv lignin produced larger amounts of valuable chemicals, such as mono-phenol, mono-aromatics, and furans, by catalytic pyrolysis over Al-SBA-15.

13.
Anal Sci ; 33(9): 1085-1089, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890496

RESUMO

When a GC/MS system is coupled with a pressurized reactor, the separation efficiency and the retention time are directly affected by the reactor pressure. To keep the GC column flow rate constant irrespective of the reaction pressure, a restrictor capillary tube and an open split interface are attached between the GC injection port and the head of a GC separation column. The capability of the attached modules is demonstrated for the on-line GC/MS analysis of catalytic reaction products of a bio-oil model sample (guaiacol), produced under a pressure of 1 to 3 MPa.

14.
J Nanosci Nanotechnol ; 17(4): 2760-763, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29667800

RESUMO

In-Situ catalytic pyrolysis of dealkaline lignin (DL) over MMZ-Hß was performed using a pyrolyzergas chromatography/mass spectroscopy for the first time. Non-catalytic pyrolysis of DL mainly produced large amounts of phenolics such as mono-phenol, alkylphenols, guaiacols, eugenols, and vanillin. By applying MMZ-Hß, the amounts of these phenolics were dramatically decreased with the increase of aromatics such as benzene, toluene, ethylbenzene, xylenes, and naphthalenes. The higher conversion efficiency from phenolics to aromatics was obtained by increasing the catalyst to DL ratio from 1/1 to 5/1.

15.
Bioresour Technol ; 194: 312-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26210145

RESUMO

Ex situ catalytic pyrolysis of Citrus unshiu (C. unshiu) peel was performed using a tandem µ-reactor-GC/MS consisting of two sequential furnaces. The pyrolyzates of C. unshiu peel, composed mainly of alcohols, ketones and furans produced in the 1st furnace of the reactor, were upgraded to aromatics by the use of catalysts in the 2nd furnace. Compared to wood powder, C. unshiu peel produced larger amounts of aromatics over HZSM-5(23). Among the various catalysts, HZSM-5(23) and HBETA(25) showed high aromatic yields, 6.78 C% and 9.69 C%, respectively. HBETA(25) produced large amounts of undesirable PAHs (3.59 C%). During the sequential catalytic upgrading test, the yield of BTEXs (benzene, toluene, ethylbenzene, xylenes) over HZSM-5(23) was reduced more slowly than that over HBETA(25) because of the slower deactivation of HZSM-5(23), which suggests that HZSM-5(23) is a more stable catalyst than the other catalysts used in this study during the sequential catalytic upgrading of C. unshiu peel pyrolyzates.


Assuntos
Biotecnologia/métodos , Citrus/química , Temperatura , Resíduos/análise , Catálise , Carvão Vegetal/análise , Coque , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Íons , Óleos/análise , Pós , Zeolitas/química
16.
Environ Sci Technol ; 44(22): 8385-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20958023

RESUMO

There is an intense ongoing debate regarding the potential scale of biofuel production without creating adverse effects on food supply. We explore the possibility of three land-efficient technologies for producing food (actually animal feed), including leaf protein concentrates, pretreated forages, and double crops to increase the total amount of plant biomass available for biofuels. Using less than 30% of total U.S. cropland, pasture, and range, 400 billion liters of ethanol can be produced annually without decreasing domestic food production or agricultural exports. This approach also reduces U.S. greenhouse gas emissions by 670 Tg CO2-equivalent per year, or over 10% of total U.S. annual emissions, while increasing soil fertility and promoting biodiversity. Thus we can replace a large fraction of U.S. petroleum consumption without indirect land use change.


Assuntos
Agricultura/métodos , Ração Animal , Biocombustíveis , Agricultura/estatística & dados numéricos , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Política Ambiental , Etanol/análise , Etanol/síntese química , Modelos Biológicos
17.
Environ Sci Technol ; 43(3): 961-7, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19245043

RESUMO

Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a higher standard for that industry than for any other domestic industry. Holding domestic industries responsible for the environmental performance of their own supply chain, over which they may exert some control, is perhaps desirable (direct land use change in this case). However, holding domestic industries responsible for greenhouse gas emissions by their competitors worldwide through market forces (via indirect land use change in this case) is fraught with a host of ethical and pragmatic difficulties. Greenhouse gas emissions associated with indirect land use change depend strongly on assumptions regarding social and environmental responsibilities for actions taken, cropping management approaches, and time frames involved, among other issues.


Assuntos
Fontes de Energia Bioelétrica , Gases , Efeito Estufa
18.
Environ Sci Technol ; 42(20): 7690-5, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18983094

RESUMO

Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.


Assuntos
Ácido Butírico/análise , Conservação de Recursos Energéticos , Grão Comestível/química , Gases/química , Efeito Estufa , Zea mays/química , Petróleo , Solo , Volatilização
19.
Environ Sci Technol ; 42(16): 6028-33, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18767661

RESUMO

Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.


Assuntos
Agricultura/economia , Fertilizantes/análise , Efeito Estufa , Nitrogênio/química , Zea mays/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Modelos Teóricos , Fatores de Tempo
20.
Bioresour Technol ; 99(17): 8429-35, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18440810

RESUMO

The ammonia fiber expansion (AFEX) process has been shown to be an effective pretreatment for lignocellulosic biomass. Technological advances in AFEX have been made since previous cost estimates were developed for this process. Recent research has enabled lower overall ammonia requirements, reduced ammonia concentrations, and reduced enzyme loadings while still maintaining high conversions of glucan and xylan to monomeric sugars. A new ammonia recovery approach has also been developed. Capital and operating costs for the AFEX process, as part of an overall biorefining system producing fuel ethanol from biomass have been developed based on these new research results. These new cost estimates are presented and compared to previous estimates. Two biological processing options within the overall biorefinery are also compared, namely consolidated bioprocessing (CBP) and enzymatic hydrolysis followed by fermentation. Using updated parameters and ammonia recovery configurations, the cost of ethanol production utilizing AFEX is calculated. These calculations indicate that the minimum ethanol selling price (MESP) has been reduced from $1.41/gal to $0.81/gal.


Assuntos
Amônia/química , Biotecnologia/métodos , Etanol/economia , Simulação por Computador , Glucose/metabolismo , Hidrólise , Laboratórios , Modelos Químicos , Água , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...