Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400921, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696611

RESUMO

Endothelial programmed death-ligand 1 (PD-L1) expression is higher in tumors than in normal tissues. Also, tumoral vasculatures tend to be leakier than normal vessels leading to a higher trans-endothelial or transmural fluid flow. However, it is not clear whether such elevated transmural flow can control endothelial PD-L1 expression. Here, a new microfluidic device is developed to investigate the relationship between transmural flow and PD-L1 expression in microvascular networks (MVNs). After treating the MVNs with transmural flow for 24 h, the expression of PD-L1 in endothelial cells is upregulated. Additionally, CD8 T cell activation by phytohemagglutinin (PHA) is suppressed when cultured in the MVNs pre-conditioned with transmural flow. Moreover, transmural flow is able to further increase PD-L1 expression in the vessels formed in the tumor microenvironment. Finally, by utilizing blocking antibodies and knock-out assays, it is found that transmural flow-driven PD-L1 upregulation is controlled by integrin αVß3. Overall, this study provides a new biophysical explanation for high PD-L1 expression in tumoral vasculatures.

2.
Bioact Mater ; 34: 401-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282966

RESUMO

In vitro vascularized cancer models utilizing microfluidics have emerged as a promising tool for mechanism study and drug screening. However, the lack of consideration and preparation methods for cancer cellular sources that are capable of adequately replicating the metastatic features of circulating tumor cells contributed to low relevancy with in vivo experimental results. Here, we show that the properties of cancer cellular sources have a considerable impact on the validity of the in vitro metastasis model. Notably, with a hydrophobic surface, we can create highly metastatic spheroids equipped with aggressive invasion, endothelium adhesion capabilities, and activated metabolic features. Combining these metastatic spheroids with the well-constructed microfluidic-based extravasation model, we validate that these metastatic spheroids exhibited a distinct extravasation response to epidermal growth factor (EGF) and normal human lung fibroblasts compared to the 2D cultured cancer cells, which is consistent with the previously reported results of in vivo experiments. Furthermore, the applicability of the developed model as a therapeutic screening platform for cancer extravasation is validated through profiling and inhibition of cytokines. We believe this model incorporating hydrophobic surface-cultured 3D cancer cells provides reliable experimental data in a clear and concise manner, bridging the gap between the conventional in vitro models and in vivo experiments.

3.
Acta Biomater ; 177: 216-227, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253303

RESUMO

The effects of helical flow in a blood vessel are investigated in a dynamic flow generator using surface acoustic wave (SAW) in the microfluidic device. The SAW, generated by an interdigital transducer (IDT), induces acoustic streaming, resulting in a stable and consistent helical flow pattern in microscale channels. This approach allows rapid development of helical flow within the channel without directly contacting the medium. The precise design of the window enables the creation of distinct unidirectional vortices, which can be controlled by adjusting the amplitude of the SAW. Within this device, optimal operational parameters of the dynamic flow generator to preserve the integrity of endothelial cells are found, and in such settings, the actin filaments within the cells are aligned to the desired state. Our findings reveal that intracellular Ca2+ concentrations vary in response to flow conditions. Specifically, comparable maximum intensity and graphical patterns were observed between low-flow rate helical flow and high-flow rate Hagen-Poiseuille flow. These suggest that the cells respond to the helical flow through mechanosensitive ion channels. Finally, adherence of monocytes is effectively reduced under helical flow conditions in an inflammatory environment, highlighting the atheroprotective role of helical flow. STATEMENT OF SIGNIFICANCE: Helical flow in blood vessels is well known to prevent atherosclerosis. However, despite efforts to replicate helical flow in microscale channels, there is still a lack of in vitro models which can generate helical flow for analyzing its effects on the vascular system. In this study, we developed a method for generating steady and constant helical flow in microfluidic channel using acoustofluidic techniques. By utilizing this dynamic flow generator, we were able to observe the atheroprotective aspects of helical flow in vitro, including the enhancement of calcium ion flux and reduction of monocyte adhesion. This study paves the way for an in vitro model of dynamic cell culture and offers advanced investigation into helical flow in our circulatory system.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Acústica , Microfluídica , Dispositivos Lab-On-A-Chip
4.
ACS Appl Mater Interfaces ; 15(33): 39539-39549, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37614002

RESUMO

While two-dimensional (2D) materials possess the desirable future of neuromorphic computing platforms, unstable charging and de-trapping processes, which are inherited from uncontrollable states, such as the interface trap between nanocrystals and dielectric layers, can deteriorate the synaptic plasticity in field-effect transistors. Here, we report a facile and effective strategy to promote artificial synaptic devices by providing physical doping in 2D transition-metal dichalcogenide nanomaterials. Our experiments demonstrate that the introduction of niobium (Nb) into 2D WSe2 nanomaterials produces charge trap levels in the band gap and retards the decay of the trapped charges, thereby accelerating the artificial synaptic plasticity by encouraging improved short-/long-term plasticity, increased multilevel states, lower power consumption, and better symmetry and asymmetry ratios. Density functional theory calculations also proved that the addition of Nb to 2D WSe2 generates defect tolerance levels, thereby governing the charging and de-trapping mechanisms of the synaptic devices. Physically doped electronic synapses are expected to be a promising strategy for the development of bioinspired artificial electronic devices.

5.
Biofabrication ; 15(4)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37567223

RESUMO

Despite the advantages of microfluidic system in drug screening, vascular systems responsible for the transport of drugs and nutrients have been hardly considered in the microfluidic-based chemotherapeutic screening. Considering the physiological characteristics of highly vascularized urinary tumors, we here investigated the chemotherapeutic response of bladder tumor cells using a vascularized tumor on a chip. The microfluidic chip was designed to have open-top region for tumor sample introduction and hydrophilic rail for spontaneous hydrogel patterning, which contributed to the construction of tumor-hydrogel-endothelium interfaces in a spatiotemporal on-demand manner. Utilizing the chip where intravascularly injected cisplatin diffuse across the endothelium and transport into tumor samples, chemotherapeutic responses of cisplatin-resistant or -susceptible bladder tumor cells were evaluated, showing the preservation of cellular drug resistance even within the chip. The open-top structure also enabled the direct harvest of tumor samples and post analysis in terms of secretome and gene expressions. Comparing the cisplatin efficacy of the cisplatin-resistant tumor cells in the presence or absence of endothelium, we found that the proliferation rates of tumor cells were increased in the vasculature-incorporated chip. These have suggested that our vascularized tumor chip allows the establishment of vascular-gel-tumor interfaces in spatiotemporal manners and further enables investigations of chemotherapeutic screening.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Sistemas Microfisiológicos , Cisplatino/farmacologia , Dispositivos Lab-On-A-Chip , Antineoplásicos/farmacologia , Endotélio , Neoplasias da Bexiga Urinária/tratamento farmacológico , Hidrogéis/química
6.
J Environ Manage ; 336: 117616, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934665

RESUMO

A direct contact bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) based on inhibition of gas production was deployed to assess the toxicity of naturally contaminated field soils and soils artificially contaminated with heavy metals. Test procedure producing optimal conditions responsible for maximum gas production was 0.5 mL test culture, 1 g soil sample, 80 RPM, and 48 h reaction time. Similarly, the concentrations which generated a 50% reduction in gas production by TUDB for the tested heavy metals were 3.01 mg/kg Cr6+; 15.30 mg/kg Ni2+;15.50 mg/kg Cu2+;16.60 mg/kg Ag+; 20.60 mg/kg As3+; 32.80 mg/kg Hg2+; 54.70 mg/kg Cd2+; and 74.0 mg/kg Pb2+. Because soil toxicity is usually influenced by various physicochemical characteristics, ten reference soils were used to determine the toxicity threshold for evaluating the toxicity of naturally contaminated field soils. All eight contaminated soils were toxic to the TUDB bioassay because their levels of inhibition ranged between 72% and 100% and exceeded the determined toxicity threshold of 10%. Compared to other direct contact assays, the newly developed assay TUDB proved to be very robust, producing highly sensitive data while the different soil physicochemical properties exerted minimal influence on the gas production activity of TUDB. Additionally, the simplicity of the developed methodology coupled with the elimination of pretreatment procedures such as elutriation, and ability to perform generate sensitive data in turbid and highly colored samples makes it, cost-effective, and easily adaptable for the assessment of heavy metal and field contaminated soils when compared with other conventional assays which require sophisticated instrumentation and prolonged testing procedures and times.


Assuntos
Metais Pesados , Poluentes do Solo , Tiossulfatos , Metais Pesados/química , Poluição Ambiental , Solo/química , Bactérias , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental/métodos
7.
J Environ Manage ; 325(Pt A): 116435, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270122

RESUMO

Benzene (B), toluene (T), ethylbenzene (E), and xylenes (X) are petrochemicals vital in various industrial and commercial processing but identified as priority pollutants due to their high toxicity. The objective of this study was to investigate the toxicological nature of BTEX mixtures under controlled laboratory aquatic conditions using sulfur-oxidizing bacteria (SOB). Results from individual BTEX tests demonstrated that the order of toxicity among BTEX was X ≥ E > T > B. Comparisons of dose-effect curves for BTEX suggest that the biochemical mode of action of B in SOB was different from those of T, E, and X. Toxicological interactions of BTEX in mixtures were studied using concentration addition (CA), independent action (IA), and combination index (CI)-isobologram models. The CI model approximated the actual toxicity of BTEX mixtures better than the CA and IA models. In most cases, BTEX induced synergistic interactions in mixtures. However, in some B-containing mixtures, antagonism was observed at low effective levels. The effective level (fa)-CI plots and polygonograms illustrate that synergistic interactions of BTEX became stronger with an increase in effective levels. In addition, ternary and quaternary mixtures were found to provoke stronger synergism than binary mixtures. The present study suggests that the CI-isobologram model is a suitable means to evaluate diverse toxicological interactions of contaminants in mixtures.


Assuntos
Derivados de Benzeno , Xilenos , Biodegradação Ambiental , Xilenos/toxicidade , Derivados de Benzeno/toxicidade , Tolueno/toxicidade , Benzeno/toxicidade , Enxofre , Bactérias , Oxirredução
8.
Front Oncol ; 12: 1052192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439519

RESUMO

Emerging microfluidic disease models have amply demonstrated their value in many fields of cancer research. These in vitro technologies recapitulate key aspects of metastatic cancer, including the process of tumor cell arrest and extravasation at the site of the metastatic tumor. To date, extensive efforts have been made to capture key features of the microvasculature to reconstitute the pre-metastatic niche and investigate dynamic extravasation behaviors using microfluidic systems. In this mini-review, we highlight recent microfluidic vascular models of tumor cell extravasation and explore how this approach contributes to development of in vitro disease models to enhance understanding of metastasis in vivo.

9.
Lab Chip ; 22(22): 4335-4348, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36226506

RESUMO

A tumor is composed of heterogeneous cell population, which is known as tumor stroma. In particular, blood vessels have an indispensable role in the tumor microenvironment acting as a key player in anti-cancer drug delivery. Recently, efforts have been made to accurately recapitulate the microenvironment by employing distinct cell types, however, the proper formation of perfusable tumor tissue is challenging. Here, perfusable tumor tissue is engineered by implanting multicellular tumor spheroids inside the microfluidic devices. Blood perfusion, spheroid growth, and vascular dynamics were monitored according to the spheroid composition and the contribution of internal and external vascular cells to spheroid perfusion was analyzed. Most notably, the increased penetration depth of fluorescence conjugated anti-cancer drug was observed in tri-culture spheroids. The implementation of tumor microenvironment reconstruction developed in this study not only creates a perfusable tumor vascular model but can also be utilized as a novel drug screening platform with patient-derived samples.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares , Dispositivos Lab-On-A-Chip , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Perfusão
10.
Lab Chip ; 22(22): 4359-4368, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36254466

RESUMO

Wet age-related macular degeneration (AMD) is a severe ophthalmic disease that develops in the outer blood-retinal barrier (oBRB), involving two types of cells, the retinal pigment epithelium (RPE) and the choriocapillaris endothelium (CCE). Unfortunately, the pathogenesis of AMD is unclear, and the risk of the only effective therapy (Anti-VEGF injection) has been consistently argued. Also, since oBRB is hard to observe in vivo, an in vitro model for the pathological study is necessary. Here, we propose an advanced oBRB model, enhanced in two major ways: fully vascularized CCE and the in vivo analogous distance between RPE and CCE. Our model consists of an RPE (ARPE-19) monolayer with adjacent CCE (HUVEC) embedded fibrin gel in the microfluidic chip and required four days to construct an oBRB. Notably, the intercellular distance was tuned to the in vivo scale (<100 µm) without any extraneous scaffold in between. Thus, the two cell layers can interact freely through the extracellular matrix (ECM) in vivo. This is significant as wet AMD is mainly developed through broken intercellular interaction. Thanks to this in vivo similarity, the model incubated under hypoxic conditions, similar to an oxygen-induced retinopathy animal model, showed upregulated vascularization comparable to the AMD condition. We envisage that our model can be used to assist the investigation of AMD.


Assuntos
Degeneração Macular , Degeneração Macular Exsudativa , Animais , Barreira Hematorretiniana , Microfluídica , Epitélio Pigmentado da Retina/patologia , Degeneração Macular/patologia , Degeneração Macular Exsudativa/complicações , Degeneração Macular Exsudativa/patologia
11.
Adv Sci (Weinh) ; 9(16): 2105809, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35686137

RESUMO

The cytotoxic response of natural killer (NK) cells in a microreactor to surface acoustic waves (SAWs) is investigated, where the SAWs produce an acoustic streaming flow. The Rayleigh-type SAWs form by an interdigital transducer propagated along the surface of a piezoelectric substrate in order to allow the dynamic stimulation of functional immune cells in a noncontact and rotor-free manner. The developed acoustofluidic microreactor enables a dynamic cell culture to be set up in a miniaturized system while maintaining the performance of agitating media. The present SAW system creates acoustic streaming flow in the cylindrical microreactor and applies flow-induced shear stress to the cells. The suspended NK cells are found to not be damaged by the SAW operation of the adjusted experimental setup. Suspended NK cell aggregates subjected to an SAW treatment show increased intracellular Ca2+ concentrations. Simultaneously treating the NK cells with SAWs and protein kinase C activator enhances the lysosomal protein expressions of the cells and the cell-mediated cytotoxicity against target tumor cells. These have important implications by showing that acoustically actuated system allows dynamic cell culture without cell damages and further alters cytotoxicity-related cellular activities.


Assuntos
Acústica , Som , Contagem de Células , Técnicas de Cultura de Células , Transdutores
12.
Genes (Basel) ; 13(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328095

RESUMO

Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, 'α-linoleic acid metabolism' was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions.


Assuntos
Cebolas , Melhoramento Vegetal , Perfilação da Expressão Gênica , Cebolas/genética , Folhas de Planta/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
13.
Lab Chip ; 21(18): 3449-3457, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34342326

RESUMO

An efficient and accurate antibiotic susceptibility test (AST) is indispensable for measuring the antimicrobial resistance of pathogenic bacteria. A minimal inhibitory concentration (MIC) can be obtained without performing repeated dilutions of the antibiotic by forming a linear antibiotic concentration gradient in a microfluidic channel. We demonstrated a device designed to use travelling surface acoustic waves (TSAWs) to enable a rapid formation of an antibiotic gradient in a few seconds. The TSAWs produced by a focused interdigital transducer deposited on the surface of a piezoelectric (LiNbO3) substrate generated an acoustic streaming flow inside a microfluidic channel, which mixed confluent streams of antibiotics in a controlled fashion. The growth of bacteria exposed to the antibiotic gradient was determined by measuring the MIC, which was used as an indicator of the effectiveness of the AST. The concentration gradient produced using our device was linear, a feature that enhanced the reliability of measurements throughout the microchannel. Two ASTs, namely Pseudomonas aeruginosa against gentamicin and levofloxacin were chosen for the case of slowly proliferating bacteria, and one AST, namely Escherichia coli against gentamicin, were chosen for the rapidly proliferating case. Appropriate antibiotic doses for Pseudomonas aeruginosa and Escherichia coli were each obtained in an efficient manner.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes , Som
14.
ACS Biomater Sci Eng ; 7(3): 1230-1241, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586426

RESUMO

Fas ligand (FasL, CD178) is known to bind to its receptor (Fas, CD95) and mediate cellular apoptosis to maintain immune homeostasis. Recently, it has been recognized that tumor cells and their microenvironments allow an adjacent vascular endothelium to express the FasL on its cell membrane, utilizing the endothelium as an immune barrier to kill antitumor cytotoxic T cells. Here, a microfluidic tumor vasculature model is presented, which enables the recapitulation of an endothelial immune barrier expressing FasL. The in vitro three-dimensional model replicates enhanced endothelial FasL expression under the hypoxic tumor microenvironment. Apoptosis rates of FasL-susceptible target cells are augmented under the microenvironment with upregulated FasL but are consequently abrogated by administrations of pharmacological inhibitions, FasL-Fas blockades. The microfluidic system suggests its promising applications in elucidating complex immunosuppressive mechanisms of the tumor microenvironment and screening of cell-mediated immunotherapies as a preclinical model.


Assuntos
Microfluídica , Receptor fas , Apoptose , Proteína Ligante Fas/genética , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Linfócitos T Citotóxicos
15.
Lab Chip ; 21(3): 494-501, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33492325

RESUMO

Label-free, three-dimensional (3D) quantitative observations of on-chip vasculogenesis were achieved using optical diffraction tomography. Exploiting 3D refractive index maps as an intrinsic imaging contrast, the vascular structures, multicellular activities, and subcellular organelles of endothelial cells were imaged and analysed throughout vasculogenesis to characterise mature vascular networks without exogenous labelling.


Assuntos
Células Endoteliais , Tomografia Óptica , Imageamento Tridimensional , Refratometria
16.
Tissue Eng Regen Med ; 18(1): 89-97, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32914287

RESUMO

BACKGROUND: Sufficient blood supply through neo-vasculature is a major challenge in cell therapy and tissue engineering in order to support the growth, function, and viability of implanted cells. However, depending on the implant size and cell types, the natural process of angiogenesis may not provide enough blood supply for long term survival of the implants, requiring supplementary strategy to prevent local ischemia. Many researchers have reported the methodologies to form pre-vasculatures that mimic in vivo microvessels for implantation to promote angiogenesis. These approaches successfully showed significant enhancement in long-term survival and regenerative functions of implanted cells, yet there remains room for improvement. METHODS: This paper suggests a proof-of-concept strategy to utilize novel scaffolds of dimpled/hollow electrospun fibers that enable the formation of highly mature pre-vasculatures with adequate dimensions and fast degrading in the tissue. RESULT: Higher surface roughness improved the maturity of endothelial cells mediated by increased cell-scaffold affinity. The degradation of scaffold material for functional restoration of the neo-vasculatures was also expedited by employing the hollow scaffold design based on co-axial electrospinning techniques. CONCLUSION: This unique scaffold-based pre-vasculature can hold implanted cells and tissue constructs for a prolonged time while minimizing the cellular loss, manifesting as a gold standard design for transplantable scaffolds.


Assuntos
Células Endoteliais , Alicerces Teciduais , Microvasos , Engenharia Tecidual
17.
Environ Pollut ; 269: 116135, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33290954

RESUMO

This study presents a novel algal-based toxicity test suitable for simple and rapid assessment of heavy metal (Hg2+, Cr6+, Cd2+, Pb2+, or As3+)-contaminated water. A closed-system kit-type algal assay was developed using Chlorella vulgaris. Toxicity was assessed by oxygen evolution in the gaseous phase of the assay kits, which was measured via a needle-type oxygen sensor. Initial cell density, light intensity, and exposure time that enabled favorable test performance for the algal assay kits were 103 cells/mL, 250 µmol m-2s-1, and 18 h, respectively. Results from the heavy metal toxicity tests demonstrate that Hg2+, Cr6+, Cd2+, and Pb2+ are more toxic in inhibiting algal photosynthetic activity than As3+. The 18 h half-maximum effective concentrations (EC50) for Hg2+, Cr6+, Cd2+, Pb2+, and As3+ were determined to be 31.3 ± 0.5, 179.6 ± 7.5, 301.3 ± 6.1, 476.1 ± 10.5, and 2184.1 ± 31.1 µg/L, respectively. A strong correlation between oxygen concentrations in the headspace of the assay kits and chlorophyll a production indicates that oxygen evolution in the gaseous phase is able to represent algal photosynthetic activity and serve as the end-point in algal toxicity tests. High test sensitivity and reproducibility as well as an easy test protocol and rapid processing time make the algal assay kit a suitable tool for simple and rapid toxicity testing of heavy metal-contaminated water.


Assuntos
Chlorella vulgaris , Metais Pesados , Clorofila A , Metais Pesados/toxicidade , Reprodutibilidade dos Testes , Água
18.
Biochim Biophys Acta Gen Subj ; 1865(2): 129796, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33212230

RESUMO

BACKGROUND: Iron excess is a risk factor for cardiovascular diseases and it is important to understand the effect of iron on vascular permeability, particularly for the transport of large metabolic hormones such as adiponectin. METHODS: We used 2-dimensional monolayers of cultured human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) as well as 3-dimensional microvascular networks to measure transendothelial flux. RESULTS: Iron supplementation reduced transendothelial electric resistance (TEER). Flux analysis indicated that under control conditions permeability of 70 kDa dextran and oligomeric forms of adiponectin were restricted in comparison with a 3 kDa dextran, however upon iron treatment permeability of the larger molecules was increased. The increased permeability and size-dependent trans-endothelial movement in response to iron was also observed in 3-dimensional microvascular networks. Mechanistically, the alteration in barrier functionality was associated with increased oxidative stress in response to iron since alterations in TEER and permeability were rescued when reactive oxygen species production was attenuated by pre-treatment with the antioxidant N-acetyl cysteine.]. CONCLUSIONS: Iron supplementation induced ROS production resulting in increased transendothelial permeability. GENERAL SIGNIFICANCE: Altogether, this suggests that the oxidative stress associated with iron excess could play an important role in the regulation of endothelial functionality, controlling hormone action in peripheral tissues by regulating the first rate-limiting step controlling hormone access to target tissues.


Assuntos
Adiponectina/metabolismo , Células Endoteliais/metabolismo , Ferro/metabolismo , Microvasos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Permeabilidade Capilar , Linhagem Celular , Impedância Elétrica , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Dispositivos Lab-On-A-Chip , Microvasos/citologia , Permeabilidade
19.
Chemosphere ; 258: 127412, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947661

RESUMO

The objective of this study was development of a simple and reliable microbial toxicity test based on fermentative bacteria to assess heavy metal (Hg2+, Cu2+, Cr6+, Ni2+, As5+, or Pb2+)-contaminated water. The dominant species of test organisms used in this study was a spore-forming fermentative bacterium, Clostridium guangxiense. Toxicity of water was assessed based on inhibition of fermentative gas production of the test organisms, which was analyzed via a syringe method. Overall, the fermentative bacteria-based test kits satisfactorily identified increased toxicity of water as water was contaminated with high amounts of heavy metals; however, levels of inhibition were dissimilar depending on the species of metals. Inhibitory effects of Hg2+, Cu2+, Cr6+, and Ni2+ were considerably greater than those of As5+ and Pb2+. The 24 h half-maximum effective concentrations (EC50) for Hg2+, Cu2+, Cr6+, Ni2+, As5+, and Pb2+ were analyzed to be 0.10, 0.51, 1.09, 3.61, 101.33, and 243.45 mg/L, respectively, confirming that Hg2+, Cu2+, Cr6+, and Ni2+ are more toxic to fermentative gas production than As5+ and Pb2+. The fermentative bacteria-based toxicity test represents an improvement over other existing toxicity tests because of ease of end-point measurement, high reproducibility, and favorable on-site field applicability. These advantages make the fermentative bacteria-based test suitable for simple and reliable toxicity screening for heavy metal-contaminated water.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Bactérias , Clostridium , Fermentação , Mercúrio/análise , Metais Pesados/análise , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Poluição da Água/análise
20.
Micromachines (Basel) ; 11(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751936

RESUMO

Inflammation is the initiation of defense of our body against harmful stimuli. Lipopolysaccharide (LPS), originating from outer membrane of Gram-negative bacteria, causes inflammation in the animal's body and can develop several diseases. In order to study the inflammatory response to LPS of blood vessels in vitro, 2D models have been mainly used previously. In this study, a microfluidic device was used to investigate independent inflammatory response of endothelial cells by LPS and interaction of inflamed blood vessel with monocytic THP-1 cells. Firstly, the diffusion of LPS across the collagen gel into blood vessel was simulated using COMSOL. Then, inflammatory response to LPS in engineered blood vessel was confirmed by the expression of Intercellular Adhesion Molecule 1 (ICAM-1) and VE-cadherin of blood vessel, and THP-1 cell adhesion and migration assay. Upregulation of ICAM-1 and downregulation of VE-cadherin in an LPS-treated condition was observed compared to normal condition. In the THP-1 cell adhesion and migration assay, the number of adhered and trans-endothelial migrated THP-1 cells were not different between conditions. However, migration distance of THP-1 was longer in the LPS treatment condition. In conclusion, we recapitulated the inflammatory response of blood vessels and the interaction of THP-1 cells with blood vessels due to the diffusion of LPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...