Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2844, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565570

RESUMO

Optical frequency combs, featuring evenly spaced spectral lines, have been extensively studied and applied to metrology, signal processing, and sensing. Recently, frequency comb generation has been also extended to MHz frequencies by harnessing nonlinearities in microelectromechanical membranes. However, the generation of frequency combs at radio frequencies (RF) has been less explored, together with their potential application in wireless technologies. In this work, we demonstrate an RF system able to wirelessly and passively generate frequency combs. This circuit, which we name quasi-harmonic tag (qHT), offers a battery-free solution for far-field ranging of unmanned vehicles (UVs) in GPS-denied settings, and it enables a strong immunity to multipath interference, providing better accuracy than other RF approaches to far-field ranging. Here, we discuss the principle of operation, design, implementation, and performance of qHTs used to remotely measure the azimuthal distance of a UV flying in an uncontrolled electromagnetic environment. We show that qHTs can wirelessly generate frequency combs with µWatt-levels of incident power by leveraging the nonlinear interaction between an RF parametric oscillator and a high quality factor piezoelectric microacoustic resonator. Our technique for frequency comb generation opens new avenues for a wide range of RF applications beyond ranging, including timing, computing and sensing.

2.
Nat Commun ; 15(1): 2741, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548757

RESUMO

Critical coupling in integrated photonic devices enables the efficient transfer of energy from a waveguide to a resonator, a key operation for many applications. This condition is achieved when the resonator loss rate is equal to the coupling rate to the bus waveguide. Carefully matching these quantities is challenging in practice, due to variations in the resonator properties resulting from fabrication and external conditions. Here, we demonstrate that efficient energy transfer to a non-critically coupled resonator can be achieved by tailoring the excitation signal in time. We rely on excitations oscillating at complex frequencies to load an otherwise overcoupled resonator, demonstrating that a virtual critical coupling condition is achieved if the imaginary part of the complex frequency equals the mismatch between loss and coupling rate. We probe a microring resonator with tailored pulses and observe a minimum intensity transmission T = 0.11 in contrast to a continuous-wave transmission T = 0.58 , corresponding to 8 times enhancement of intracavity intensity. Our technique opens opportunities for enhancing and controlling on-demand light-matter interactions for linear and nonlinear photonic platforms.

3.
Nat Commun ; 14(1): 3432, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301846

RESUMO

Melanin-like nanomaterials have emerged in surface biofunctionalization in a material-independent manner due to their versatile adhesion arising from their catechol-rich structures. However, the unique adhesive properties of these materials ironically raise difficulties in their site-specific fabrication. Here, we report a method for site-specific fabrication and patterning of melanin-like pigments, using progressive assembly on an initiator-loaded template (PAINT), different from conventional lithographical methods. In this method, the local progressive assembly could be naturally induced on the given surface pretreated with initiators mediating oxidation of the catecholic precursor, as the intermediates generated from the precursors during the progressive assembly possess sufficient intrinsic underwater adhesion for localization without diffusion into solution. The pigment fabricated by PAINT showed efficient NIR-to-heat conversion properties, which can be useful in biomedical applications such as the disinfection of medical devices and cancer therapies.


Assuntos
Melaninas , Nanoestruturas , Melaninas/química , Nanoestruturas/química
4.
Phys Rev Lett ; 129(20): 203601, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462013

RESUMO

Light scattering is one of the most established wave phenomena in optics, lying at the heart of light-matter interactions and of crucial importance for nanophotonic applications. Passivity, causality, and energy conservation imply strict bounds on the degree of control over scattering from small particles, with implications on the performance of many optical devices. Here, we demonstrate that these bounds can be surpassed by considering excitations at complex frequencies, yielding extreme scattering responses as tailored nanoparticles reach a quasi-steady-state regime. These mechanisms can be used to engineer light scattering of nanostructures beyond conventional limits for noninvasive sensing, imaging, and nanoscale light manipulation.

5.
Food Chem ; 383: 132399, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35168041

RESUMO

Plant-derived polyphenols have emerged as molecular building blocks for biomedical architectures. However, the isolation of polyphenols from other components requires labor-intensive procedures, which increases costs and often raises environmental concerns. Here, we suggest that decaffeination can be a convenient and cost-effective method for enhancing the antibacterial performance of polyphenol-rich tea extracts. As a demonstration, we compared the properties of a nano-thin coating made of decaffeinated (dGT coating) and raw green tea extract (GT coating). The dGT coating exhibited enhanced antibacterial performance with regard to bacterial killing and prevention of bacterial attachment compared with the GT coating. Moreover, the chemical reactivity of the dGT coating was further utilized for secondary modifications, which enhanced the overall antibacterial performance of the modified surface. Given its intrinsic low toxicity, we envision that the developed antibacterial coating is ready for the next steps toward application in real clinical settings.


Assuntos
Polifenóis , Chá , Antibacterianos/farmacologia , Antioxidantes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Chá/química
7.
Nature ; 600(7887): 75-80, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853455

RESUMO

Nonlinear wave-matter interactions may give rise to solitons, phenomena that feature inherent stability in wave propagation and unusual spectral characteristics. Solitons have been created in a variety of physical systems and have had important roles in a broad range of applications, including communications, spectroscopy and metrology1-4. In recent years, the realization of dissipative Kerr optical solitons in microcavities has led to the generation of frequency combs in a chip-scale platform5-10. Within a cavity, photons can interact with mechanical modes. Cavity optomechanics has found applications for frequency conversion, such as microwave-to-optical or radio-frequency-to-optical11-13, of interest for communications and interfacing quantum systems operating at different frequencies. Here we report the observation of mechanical micro-solitons excited by optical fields in an optomechanical microresonator, expanding soliton generation in optical resonators to a different spectral window. The optical field circulating along the circumference of a whispering gallery mode resonator triggers a mechanical nonlinearity through optomechanical coupling, which in turn induces a time-varying periodic modulation on the propagating mechanical mode, leading to a tailored modal dispersion. Stable localized mechanical wave packets-mechanical solitons-can be realized when the mechanical loss is compensated by phonon gain and the optomechanical nonlinearity is balanced by the tailored modal dispersion. The realization of mechanical micro-solitons driven by light opens up new avenues for optomechanical technologies14 and may find applications in acoustic sensing, information processing, energy storage, communications and surface acoustic wave technology.

8.
Adv Healthc Mater ; 9(16): e2000540, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543085

RESUMO

Colorants have been utilized for precise biomarker detection in rapid and convenient colorimetric bioassays. However, the diffusion of colorants in solution often results in poor sensitivity, which is a major obstacle to the clinical translation of current colorants. To address this issue, in the current study, a unique colorant is developed that possesses adhesiveness for concentration near the target biomarker, avoiding diffusion. In nature, the synergistic interplay between catechol and amine functional groups is thought to be key for the unique mechanism of marine mussel adhesion. In addition, polymerized catecholamines are found in nature as biopigments, that is, in melanin. The dual role of catechol/catecholamine moieties in natural organics inspire to design novel colorimetric bioassays based on an adhesive colorant. Horseradish peroxidase (HRP) is used to initiate in situ polymerization of the catecholic precursors with amine-containing additive molecules and simultaneously attach them near the HRP-labeled biomarkers. This novel catecholamine-based adhesive colorant provides an excellent quantitative (naked-eye) visible signal and it also generates superb spatial information on the biomarkers on complex surfaces (e.g., cell membranes).


Assuntos
Adesivos , Colorimetria , Animais , Biomarcadores , Catecolaminas , Peroxidase do Rábano Silvestre
9.
Sci Adv ; 4(6): eaat0232, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29888328

RESUMO

Inducing nonreciprocal wave propagation is a fundamental challenge across a wide range of physical systems in electromagnetics, optics, and acoustics. Recent efforts to create nonreciprocal devices have departed from established magneto-optic methods and instead exploited momentum-based techniques such as coherent spatiotemporal modulation of resonators and waveguides. However, to date, the nonreciprocal frequency responses that these devices can achieve have been limited, mainly to either broadband or Lorentzian-shaped transfer functions. We show that nonreciprocal coupling between waveguides and resonator networks enables the creation of devices with customizable nonreciprocal frequency responses. We create nonreciprocal coupling through the action of synthetic phonons, which emulate propagating phonons and can scatter light between guided and resonant modes that differ in both frequency and momentum. We implement nonreciprocal coupling in microstrip circuits and experimentally demonstrate both elementary nonreciprocal functions such as isolation and gyration, as well as reconfigurable, higher-order nonreciprocal filters. Our results suggest nonreciprocal coupling as a platform for a broad class of customizable nonreciprocal systems, adaptable to all wave phenomena.

10.
Nat Commun ; 8(1): 205, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785045

RESUMO

The transport of sound and heat, in the form of phonons, can be limited by disorder-induced scattering. In electronic and optical settings the introduction of chiral transport, in which carrier propagation exhibits parity asymmetry, can remove elastic backscattering and provides robustness against disorder. However, suppression of disorder-induced scattering has never been demonstrated in non-topological phononic systems. Here we experimentally demonstrate a path for achieving robust phonon transport in the presence of material disorder, by explicitly inducing chirality through parity-selective optomechanical coupling. We show that asymmetric optical pumping of a symmetric resonator enables a dramatic chiral cooling of clockwise and counterclockwise phonons, while simultaneously suppressing the hidden action of disorder. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to optical cooling of the mechanics without added damping, an effect that has no optical analog. This technique can potentially improve upon the fundamental thermal limits of resonant mechanical sensors, which cannot be attained through sideband cooling.Chiral transport can provide robustness against disorder, resulting in improved resonant modes for sensing and metrology. Here, Kim et al. demonstrate chiral phonon transport, disorder suppression and anomalous cooling without damping in an asymmetrically-pumped optomechanical system.

11.
Sci Rep ; 7(1): 1647, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484213

RESUMO

Low-loss optical isolators and circulators are critical nonreciprocal components for signal routing and protection, but their chip-scale integration is not yet practical using standard photonics foundry processes. The significant challenges that confront integration of magneto-optic nonreciprocal systems on chip have made imperative the exploration of magnet free alternatives. However, none of these approaches have yet demonstrated linear optical isolation with ideal characteristics over a microscale footprint - simultaneously incorporating large contrast with ultralow forward loss - having fundamental compatibility with photonic integration in standard waveguide materials. Here we demonstrate that complete linear optical isolation can be obtained within any dielectric waveguide using only a whispering-gallery microresonator pumped by a single-frequency laser. The isolation originates from a nonreciprocal induced transparency based on a coherent light-sound interaction, with the coupling originating from the traveling-wave Brillouin scattering interaction, that breaks time-reversal symmetry within the waveguide-resonator system. Our result demonstrates that material-agnostic and wavelength-agnostic optical isolation is far more accessible for chip-scale photonics than previously thought.

12.
Opt Express ; 25(2): 776-784, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157966

RESUMO

Dynamical back-action cooling of phonons in optomechanical systems having one optical mode is well studied. Systems with two optical modes have the potential to reach significantly higher cooling rate through resonant enhancement of both pump and scattered light. Here we experimentally investigate the role of dual optical densities of states on Brillouin optomechanical cooling, and the deviation from theory caused by thermal locking to the pump laser. Using this, we demonstrate a room temperature system operating very close to the strong coupling regime, where saturation of cooling is anticipated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...