Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963038

RESUMO

Sexual dimorphism affects various biological functions, including immune responses. However, the mechanisms by which sex alters immunity remain largely unknown. Using Caenorhabditis elegans as a model species, we showed that males exhibit enhanced immunity against various pathogenic bacteria through the upregulation of HLH-30 (Helix Loop Helix 30/TFEB (transcription factor EB), a transcription factor crucial for macroautophagy/autophagy. Compared with hermaphroditic C. elegans, males displayed increased activity of HLH-30/TFEB, which contributed to enhanced antibacterial immunity. atg-2 (AuTophaGy (yeast Atg homolog) 2) upregulated by HLH-30/TFEB mediated increased immunity in male C. elegans. Thus, the males appear to be equipped with enhanced HLH-30/TFEB-mediated autophagy, which increases pathogen resistance, and this may functionally prolong mate-searching ability with reduced risk of infection.

2.
Aging Cell ; : e14151, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529797

RESUMO

Classical genetic analysis is invaluable for understanding the genetic interactions underlying specific phenotypes, but requires laborious and subjective experiments to characterize polygenic and quantitative traits. Contrarily, transcriptomic analysis enables the simultaneous and objective identification of multiple genes whose expression changes are associated with specific phenotypes. Here, we conducted transcriptomic analysis of genes crucial for longevity using datasets with daf-2/insulin/IGF-1 receptor mutant Caenorhabditis elegans. Our analysis unraveled multiple epistatic relationships at the transcriptomic level, in addition to verifying genetically established interactions. Our combinatorial analysis also revealed transcriptomic changes associated with longevity conferred by daf-2 mutations. In particular, we demonstrated that the extent of lifespan changes caused by various mutant alleles of the longevity transcription factor daf-16/FOXO matched their effects on transcriptomic changes in daf-2 mutants. We identified specific aging-regulating signaling pathways and subsets of structural and functional RNA elements altered by different genes in daf-2 mutants. Lastly, we elucidated the functional cooperation between several longevity regulators, based on the combination of transcriptomic and molecular genetic analysis. These data suggest that different biological processes coordinately exert their effects on longevity in biological networks. Together our work demonstrates the utility of transcriptomic dissection analysis for identifying important genetic interactions for physiological processes, including aging and longevity.

3.
Nat Commun ; 14(1): 3716, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349299

RESUMO

Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.


Assuntos
Aconitato Hidratase , Caenorhabditis elegans , Humanos , Animais , Aconitato Hidratase/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Oxaloacético , Oxaloacetatos , Resposta a Proteínas não Dobradas , Mamíferos/metabolismo
4.
Genome Res ; 32(11-12): 2003-2014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36351769

RESUMO

Aging is associated with changes in a variety of biological processes at the transcriptomic level, including gene expression. Two types of aging occur during a lifetime: chronological and physiological aging. However, dissecting the difference between chronological and physiological ages at the transcriptomic level has been a challenge because of its complexity. We analyzed the transcriptomic features associated with physiological and chronological aging using Caenorhabditis elegans as a model. Many structural and functional transcript elements, such as noncoding RNAs and intron-derived transcripts, were up-regulated with chronological aging. In contrast, mRNAs with many biological functions, including RNA processing, were down-regulated with physiological aging. We also identified an age-dependent increase in the usage of distal 3' splice sites in mRNA transcripts as a biomarker of physiological aging. Our study provides crucial information for dissecting chronological and physiological aging at the transcriptomic level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Perfilação da Expressão Gênica , Proteínas de Caenorhabditis elegans/genética , Transcriptoma
5.
Immun Ageing ; 19(1): 56, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380393

RESUMO

Immunosenescence is an age-dependent decline in immune functions and hallmark of aging in diverse species, ranging from invertebrates to mammals. However, identifying the factors responsible for immunosenescence is challenging because of the complexity of immune systems and aging in mammals. The roundworm Caenorhabditis elegans is suitable for understanding immunosenescence because of its simple immune system and rapid aging process. In this review, we discuss the advances in our understanding of immunosenescence in C. elegans. PMK-1/p38 mitogen-activated protein kinase (MAPK), SKN-1/NRF, and ZIP-10/bZIP transcription factor regulate immunosenescence through p38 MAPK and insulin/IGF-1 signaling pathways. Because these factors and pathways are evolutionarily conserved, the findings discussed in this review may help understand the mechanisms underlying immunosenescence and develop new treatment therapy for immunosenescence in humans.

6.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34604714

RESUMO

Y RNA is a conserved small non-coding RNA whose functions in aging remain unknown. Here, we sought to determine the role of C. elegans Y RNA homologs, CeY RNA (CeY) and stem-bulge RNAs (sbRNAs), in aging. We found that the levels of CeY and sbRNAs generally increased during aging. We showed that CeY was downregulated by oxidative and thermal stresses, whereas several sbRNAs were upregulated by oxidative stress. We did not observe lifespan phenotypes by mutations in CeY-coding yrn-1. Future research under various genetic and environmental conditions is required to further evaluate the role of Y RNA in C. elegans aging.

7.
Aging Cell ; 20(1): e13300, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382195

RESUMO

Dietary restriction extends lifespan in various organisms by reducing the levels of both nutrients and non-nutritional food-derived cues. However, the identity of specific food-derived chemical cues that alter lifespan remains unclear. Here, we identified several volatile attractants that decreased the longevity on food deprivation, a dietary restriction regimen in Caenorhabditis elegans. In particular, we found that the odor of diacetyl decreased the activity of DAF-16/FOXO, a life-extending transcription factor acting downstream of insulin/IGF-1 signaling. We then demonstrated that the odor of lactic acid bacteria, which produce diacetyl, reduced the nuclear accumulation of DAF-16/FOXO. Unexpectedly, we showed that the odor of diacetyl decreased longevity independently of two established diacetyl receptors, ODR-10 and SRI-14, in sensory neurons. Thus, diacetyl, a food-derived odorant, may shorten food deprivation-induced longevity via decreasing the activity of DAF-16/FOXO through binding to unidentified receptors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Diacetil/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Odorantes/análise , Animais , Dietoterapia , Regulação para Baixo , Longevidade
9.
Mol Cells ; 42(5): 379-385, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31094164

RESUMO

Non-coding RNAs (ncRNAs) comprise various RNA species, including small ncRNAs and long ncRNAs (lncRNAs). ncRNAs regulate various cellular processes, including transcription and translation of target messenger RNAs. Recent studies also indicate that ncRNAs affect organismal aging and conversely aging influences ncRNA levels. In this review, we discuss our current understanding of the roles of ncRNAs in aging and longevity, focusing on recent advances using the roundworm Caenorhabditis elegans. Expression of various ncRNAs, including microRNA (miRNA), tRNA-derived small RNA (tsRNA), ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and lncRNA, is altered during aging in C. elegans. Genetic modulation of specific ncRNAs affects longevity and aging rates by modulating established aging-regulating protein factors. Because many aging-regulating mechanisms in C. elegans are evolutionarily conserved, these studies will provide key information regarding how ncRNAs modulate aging and lifespan in complex organisms, including mammals.


Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , RNA não Traduzido/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , RNA não Traduzido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...