Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Ecotoxicology ; 33(1): 22-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182934

RESUMO

Atlantic killifish (Fundulus heteroclitus) is a valuable model in evolutionary toxicology to study how the interactions between genetic and environmental factors serve the adaptive ability of organisms to resist chemical pollution. Killifish populations inhabiting environmental toxicant-contaminated New Bedford Harbor (NBH) show phenotypes tolerant to polychlorinated biphenyls (PCBs) and differences at the transcriptional and genomic levels. However, limited research has explored epigenetic alterations and metabolic effects in NBH killifish. To identify the involvement of epigenetic and metabolic regulation in the adaptive response of killifish, we investigated tissue- and sex-specific differences in global DNA methylation and metabolomic profiles of NBH killifish populations, compared to sensitive populations from a non-polluted site, Scorton Creek (SC). The results revealed that liver-specific global DNA hypomethylation and differential metabolites were evident in fish from NBH compared with those from SC. The sex-specific differences were not greater than the tissue-specific differences. We demonstrated liver-specific enriched metabolic pathways (e.g., amino acid metabolic pathways converged into the urea cycle and glutathione metabolism), suggesting possible crosstalk between differential metabolites and DNA hypomethylation in the livers of NBH killifish. Additional investigation of methylated gene regions is necessary to understand the functional role of DNA hypomethylation in the regulation of enzyme-encoding genes associated with metabolic processes and physiological changes in NBH populations.


Assuntos
Fundulidae , Poluentes Químicos da Água , Animais , Masculino , Feminino , Fundulus heteroclitus , Fundulidae/genética , Metilação de DNA , Fígado/metabolismo , DNA/metabolismo , DNA/farmacologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
2.
PLoS One ; 18(7): e0288871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523386

RESUMO

Palatine tonsils (PT) are B cell-predominant lymphoid organs that provide primary immune responses to airborne and dietary pathogens. Numerous histopathological and immunological studies have been conducted on PT, yet no investigations have been conducted on its metabolic profile. We performed high-resolution magic angle spinning nuclear magnetic resonance spectroscopy-based metabolic profiling in 35 pediatric and 28 adult human palatine tonsillar tissue samples. A total of 36 metabolites were identified, and the levels of 10 metabolites were significantly different depending on age. Among them, partial correlation analysis shows that glucose levels increased with age, whereas glycine, phosphocholine, phosphoethanolamine, and ascorbate levels decreased with age. We confirmed the decrease in immunometabolic activity in adults through metabolomic analysis, which had been anticipated from previous histological and immunological studies on the PT. These results improve our understanding of metabolic changes in the PT with aging and serve as a basis for future tonsil-related metabolomic studies.


Assuntos
Envelhecimento , Tonsila Palatina , Humanos , Criança , Adulto , Tonsila Palatina/patologia , Envelhecimento/patologia , Linfócitos B , Metabolômica
3.
Kidney Res Clin Pract ; 42(5): 591-605, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37448290

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most prevalent form of glomerulonephritis worldwide. Prediction of disease progression in IgAN can help to provide individualized treatment based on accurate risk stratification. METHODS: We performed proton nuclear magnetic resonance-based metabolomics analyses of serum and urine samples from healthy controls, non-progressor (NP), and progressor (P) groups to identify metabolic profiles of IgAN disease progression. Metabolites that were significantly different between the NP and P groups were selected for pathway analysis. Subsequently, we analyzed multivariate area under the receiver operating characteristic (ROC) curves to evaluate the predictive power of metabolites associated with IgAN progression. RESULTS: We observed several distinct metabolic fingerprints of the P group involving the following metabolic pathways: glycolipid metabolism; valine, leucine, and isoleucine biosynthesis; aminoacyl-transfer RNA biosynthesis; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism. In multivariate ROC analyses, the combinations of serum glycerol, threonine, and proteinuria (area under the curve [AUC], 0.923; 95% confidence interval [CI], 0.667-1.000) and of urinary leucine, valine, and proteinuria (AUC, 0.912; 95% CI, 0.667-1.000) showed the highest discriminatory ability to predict IgAN disease progression. CONCLUSION: This study identified serum and urine metabolites profiles that can aid in the identification of progressive IgAN and proposed perturbed metabolic pathways associated with the identified metabolites.

4.
Fish Shellfish Immunol ; 138: 108844, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225060

RESUMO

Climate change is one of the most important threats to farmed abalone worldwide. Although abalone is more susceptible to vibriosis at higher water temperatures, the molecular mode of action underlying this has not been fully elucidated. Therefore, this study aimed to address the high susceptibility of Halitotis discus hannai to V. harveyi infection using abalone hemocytes exposed to low and high temperatures. Abalone hemocytes were divided into four groups, 20C, 20 V, 25C, and 25 V, depending on co-culture with (V)/without (C) V. harveyi (MOI = 12.8) and incubation temperature (20 °C or 25 °C). After 3 h of incubation, hemocyte viability and phagocytic activity were measured, and RNA sequencing was performed using Illumina Novaseq. The expression of several virulence-related genes in V. harveyi was analyzed using real-time PCR. The viability of hemocytes was significantly decreased in the 25 V group compared to cells in the other groups, whereas phagocytic activity at 25 °C was significantly higher than at 20 °C. Although a number of immune-associated genes were commonly upregulated in abalone hemocyte exposed to V. harveyi, regardless of temperature, pathways and genes regarding pro-inflammatory responses (interleukin-17 and tumor necrosis factor) and apoptosis were significantly overexpressed in the 25 V group compared to the 25C group. Notably, in the apoptosis pathway, genes encoding executor caspases (casp3 and casp7) and pro-apoptotic factor, bax were significantly up-regulated only in the 25 V group, while the apoptosis inhibitor, bcl2L1 was significantly up-regulated only in the 20 V group compared to the control group at the respective temperatures. The co-culture of V. harveyi with abalone hemocytes at 25 °C up-regulated several virulence-related genes involved in quorum sensing (luxS), antioxidant activity (katA, katB, and sodC), motility (flgI), and adherence/invasion (ompU) compared to those at 20 °C. Therefore, our results showed that H. discus hannai hemocytes exposed to V. harveyi at 25 °C were highly stressed by vigorously activated inflammatory responses and that the bacterial pathogen overexpressed several virulence-related genes at the high temperature tested. The transcriptomic profile of both abalone hemocytes and V. harveyi in the present study provide insight into differential host-pathogen interactions depending on the temperature conditions and the molecular backgrounds related to increased abalone vulnerability upon global warming.


Assuntos
Gastrópodes , Vibrioses , Vibrio , Animais , Temperatura , Vibrio/fisiologia , Gastrópodes/genética
5.
Toxicol Res ; 39(2): 307-315, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37008688

RESUMO

In the environment, aquatic organisms are not only directly exposed to pollutants, but the effects can be exacerbated along the food chain. In this study, we investigated the effect of the food (water flea) on the secondary consumer (zebrafish) with the exposure diclofenac (DCF) Both organisms were exposed to an environmentally relevant concentrations (15 µg/L) of diclofenac for five days, and zebrafish were fed exposed and non-exposed water fleas, respectively. Metabolites of the water fleas were directly analyzed using HRMAS NMR, and for zebrafish, polar metabolite were extracted and analyzed using liquid NMR. Metabolic profiling was performed and statistically significant metabolites which affected by DCF exposure were identified. There were more than 20 metabolites with variable importance (VIP) score greater than 1.0 in comparisons in fish groups, and identified metabolites differed depending on the effect of exposure and the effect of food. Specifically, exposure to DCF significantly increased alanine and decreased NAD + in zebrafish, which means energy demand was increased. Additionally, the effects of exposed food decreased in guanosine, a neuroprotective metabolite, which explained that the neurometabolic pathway was perturbated by the feeding of exposed food. Our results which short-term exposed primary consumers to pollutants indirectly affected the metabolism of secondary consumers suggest that the long-term exposure further study remains to be investigated.

6.
Metabolites ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984796

RESUMO

Several studies have demonstrated that nuclear magnetic resonance (NMR) metabolic profiles can differentiate patients with caries from healthy individuals; however, these studies only identified individual metabolites. The present study aimed to identify a salivary metabolite biomarker panel for the diagnosis of early childhood caries (ECC). Saliva samples from children with and without caries were analyzed using NMR spectroscopy. Multivariate and univariate analyses were performed to identify the discriminating metabolites. Selected metabolites were further evaluated and used to detect ECC. The saliva samples of children with ECC were characterized based on the increased levels of formate, glycerophosphocholine, and lactate and reduced levels of alanine, glycine, isoleucine, lysine, proline, and tyrosine. The levels of these metabolites were significantly different from those in the control in the ECC subgroup according to caries severity and correlated with the number of decayed and filled teeth or surfaces. Subsequently, an optimal salivary metabolite biomarker panel comprising formate, lactate, proline, and glycine was developed. This panel exhibited a better diagnostic performance for ECC than a single metabolite. These results demonstrate that salivary metabolic signatures can reflect oral conditions associated with dental caries, thereby emphasizing the importance of distinct salivary metabolic profiles as potential biomarkers of ECC.

7.
Biosens Bioelectron ; 224: 115058, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630744

RESUMO

Amide hydrolysis using enzyme labels, such as proteases, occurs at a slower rate than phosphoester and carboxyl ester hydrolysis. Thus, it is not very useful for obtaining high signal amplification in biosensors. However, amide hydrolysis is less sensitive to nonenzymatic spontaneous hydrolysis, allowing for lower background levels. Herein, we report that amide hydrolysis by DT-diaphorase (DT-D) occurs rapidly and that its combination with five redox-cycling reactions allows for the development of a highly sensitive electrochemical immunosensor. DT-D rapidly generates ortho-aminohydroxy-naphthalene (oAN) from its amide substrate via amide hydrolysis, which not even trypsin, a highly catalytic protease, can achieve. NADH, which is required for amide hydrolysis, advantageously acts as a reducing agent for rapid electrooxidation-based redox-cycling reactions. In the presence of oAN, DT-D, and NADH, two redox-cycling reactions rapidly occur. In the additional presence of an electron mediator, Ru(NH3)63+ [Ru(III)], three more redox-cycling reactions occur because Ru(III) reacts rapidly with oAN and DT-D. Although the O2-related redox-cycling reactions and redox reaction decrease electrochemical signals, this signal-decreasing effect is not significant in air-saturated solutions. The slow electrooxidation of NADH at an indium tin oxide electrode and sluggish reaction between NADH and Ru(III) allow for low electrochemical backgrounds. When the developed signal amplification scheme is tested for the sandwich-type electrochemical detection of parathyroid hormone (PTH), a detection limit of ∼1 pg/mL is obtained. The detection method is highly sensitive and can accurately measure PTH in serum samples.


Assuntos
Técnicas Biossensoriais , Hidrólise , Técnicas Biossensoriais/métodos , NAD , Imunoensaio/métodos , Oxirredução , Endopeptidases , Técnicas Eletroquímicas
8.
Environ Toxicol Pharmacol ; 97: 104031, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36460283

RESUMO

In this study, we aimed to investigate the potential hazards of volatile organic compounds (VOCs) on the development of zebrafish. To this end, zebrafish embryos were exposed in two different windows, either alone or in a mixture with VOCs (benzene, toluene, and formaldehyde) [EW1: 4 ± 2 h post-fertilization (hpf) to 24 hpf and EW2: 24 ± 2 hpf to 48 hpf]. Alterations in global DNA methylation and related gene expression, behavioral responses, and stress-related gene expression were observed. In addition to these endpoints, non-targeted NMR-based global metabolomics followed by pathway analysis showed significant changes in the metabolism of various amino acids during VOC exposure. Regardless of the analyzed endpoints, toluene was the most toxic chemical when exposed individually and possibly played the most pivotal role in the mixture treatment conditions. In conclusion, our data show that exposure to VOCs at embryonic developmental stages causes physiological perturbations and adverse outcomes at later life stages.


Assuntos
Benzeno , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Tolueno/toxicidade , Formaldeído/toxicidade , Epigênese Genética , Embrião não Mamífero
9.
Metabolites ; 12(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36557321

RESUMO

During the off-season, soccer players in Korea attend the winter training season (WTS) to build running stamina for the next season. For young soccer players, proper recovery time is needed to prevent injury or muscle damage. In this study, urinary metabolites in young players after 1, 5, and 10 days of the WTS were analyzed using nuclear magnetic resonance spectroscopy (NMR) combined with multivariate analysis to suggest appropriate recovery times for improving their soccer skills. After NMR analysis of the urine samples obtained from young players, 79 metabolites were identified, and each group (1, 5, or 10 days after WTS) was separated from the before the WTS group in the target profiling analysis using partial least squares-discriminant analysis (PLS-DA). Of these, 15 metabolites, including 1-methylnicotinamide, 3-indoxylsulfate, galactarate, glutamate, glycerol, histamine, methylmalonate, maltose, N-phenylacetylglycine, trimethylamine, urea, 2-hydroxybutyrate, adenine, alanine, and lactate, were significantly different than those from before the WTS and were mainly involved in the urea, purine nucleotide, and glucose-alanine cycles. In this study, most selected metabolites increased 1 day after the WTS and then returned to normal levels. However, 4 metabolites, adenine, 2-hydroxybutyrate, alanine, and lactate, increased during the 5 days of recovery time following the WTS. Based on excess ammonia, adenine, and lactate levels in the urine, at least 5 days of recovery time can be considered appropriate.

10.
Micromachines (Basel) ; 13(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36144051

RESUMO

Bacterial infections in marine fishes are linked to mass mortality issues; hence, rapid detection of an infection can contribute to achieving a faster diagnosis using point-of-care testing. There has been substantial interest in identifying diagnostic biomarkers that can be detected in major organs to predict bacterial infections. Aspartate was identified as an important biomarker for bacterial infection diagnosis in olive flounder (Paralichthys olivaceus) fish. To determine aspartate levels, an amperometric biosensor was designed based on bi-enzymes, namely, glutamate oxidase (GluOx) and aspartate transaminase (AST), which were physisorbed on copolymer reduced graphene oxide (P-rGO), referred to as enzyme nanosheets (GluOx-ASTENs). The GluOx-ASTENs were drop casted onto a Prussian blue electrodeposited screen-printed carbon electrode (PB/SPCE). The proposed biosensor was optimized by operating variables including the enzyme loading amount, coreactant (α-ketoglutarate) concentration, and pH. Under optimal conditions, the biosensor displayed the maximum current responses within 10 s at the low applied potential of -0.10 V vs. the internal Ag/AgCl reference. The biosensor exhibited a linear response from 1.0 to 2.0 mM of aspartate concentrations with a sensitivity of 0.8 µA mM-1 cm-2 and a lower detection limit of approximately 500 µM. Moreover, the biosensor possessed high reproducibility, good selectivity, and efficient storage stability.

11.
Metabolites ; 12(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35736451

RESUMO

Sulforaphane is an isocyanate abundantly present in cruciferous vegetables. In the present study, we aimed to investigate the effects of sulforaphane on secondhand smoking (SHS)-induced pulmonary damage in mice. Additionally, a metabolomic study was performed to identify biomarkers associated with pulmonary disease using proton nuclear magnetic resonance (1H-NMR) analysis. Male C57BL6J mice were divided into a control group, an SHS exposure group (positive control group, PC), and a sulforaphane treatment group exposed to secondhand smoke (SS) (n = 5 per group). The PC and SS groups were exposed to secondhand smoke in a chamber twice daily for four weeks. Mice in the SS group were orally administered sulforaphane (50 mg/kg) for four weeks during secondhand smoke exposure. Histopathological examination of the lungs revealed pulmonary damage in PC mice, including loss of bronchial epithelial cells, bronchial wall thickening, and infiltration of macrophages. In contrast, mice in the SS group showed little or no epithelial thickening, thereby exhibiting reduced lung damage. Mouse serum and lung tissues were collected and analyzed to determine changes in endogenous metabolites using 1H-NMR. After target profiling, we identified metabolites showing the same tendency in the serum and lung as biomarkers for SHS-induced pulmonary damage, including taurine, glycerol, creatine, arginine, and leucine. As a result of histopathological examination, sulforaphane might inhibit SHS-induced lung damage, and metabolite analysis results suggest potential biomarkers for SHS-induced pulmonary damage in mice.

12.
Fish Shellfish Immunol ; 126: 178-186, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643352

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that participate in various biological and cellular processes by regulating target gene expression. miRNAs are also known to play vital roles in the pathogenesis of various diseases, including infections, as well as the disease progression and defense responses. In this study, we examined the expression levels of pol-miR-140-3p and its target gene, kinesin family member 5A (KIF5A), in association with the Streptococcus parauberis (S. parauberis) infection, a major bacterial pathogen that causes streptococcosis in olive flounder (Paralichthys olivaceus). KIF5A is a heavy chain isoform of kinesin-1, which is known to be brain-specific, and this study is the first examination of KIF5A expression related to the regulation of miRNA in olive flounder (named PoKIF5A). There were significant differences in expression levels between infected and healthy olive flounder as the expression of pol-miR-140-3p in the infected fish was lower than that in the control, while the expression of PoKIF5A was higher in the infected fish than in the healthy controls. These contradictory results suggest that downregulated pol-miR-140-3p induces the expression of PoKIF5A against S. parauberis infection in olive flounder.


Assuntos
Doenças dos Peixes , Linguado , MicroRNAs , Infecções Estreptocócicas , Animais , Família , Doenças dos Peixes/microbiologia , Linguado/genética , Linguado/microbiologia , Cinesinas/genética , MicroRNAs/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus
13.
BMB Rep ; 55(2): 98-103, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000669

RESUMO

Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Expression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of ß-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound healing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator. [BMB Reports 2022;55(2): 98-103].


Assuntos
Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona , Proteínas de Membrana/genética , Neoplasias , Piruvato Quinase , Hormônios Tireóideos/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Musculares/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Transdução de Sinais/genética , Proteínas de Ligação a Hormônio da Tireoide
14.
J Toxicol Environ Health A ; 85(1): 29-42, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34445936

RESUMO

The aim of this study was to investigate changes in the intracellular metabolism resulting from cisplatin (CDDP)-induced nephrotoxicity in normal kidney tubular epithelial NRK-52E cells. Cytotoxicity, cell cycle analysis, and apoptotic cell death were all evaluated in NRK-52E cells treated with CDDP. Subsequently, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used to investigate cellular metabolic profiles. CDDP-induced nephrotoxicity was determined in vivo model. Cytotoxicity in the NRK-52E cells significantly rose following treatment with CDDP and these increases were found to be concentration-dependent. Both p53 and Bax protein expression was increased in CDDP-treated NRK-52E cells, correlating with enhanced cellular apoptosis. In addition, a number of metabolites were altered in both media and cell lysates in these cells. In cell lysates, citrate, creatinine, and acetate levels were dramatically reduced following treatment with 20 µM CDDP concentrations, while glutamate level was elevated. Lactate and acetate levels were significantly increased in culture media but citrate concentrations were reduced following high 20 µM CDDP concentrations incubation. In addition, excretion of clusterin, calbindin, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), selenium binding protein 1 (SBP1), and pyruvate kinase M2 (PKM2) into the culture media was significantly increased in CDDP-treated cells while expression of acetyl CoA synthetase 1 (AceCS1) was markedly reduced in these cells. These findings suggest that acetate-dependent metabolic pathway may be a reliable and useful biomarker for detecting CDDP-induced nephrotoxicity. Taken together, data demonstrate that the discovery of novel biomarkers by metabolite profiling in target cells may contribute to the detection of nephrotoxicity and new drug development.


Assuntos
Injúria Renal Aguda/metabolismo , Cisplatino/toxicidade , Acetatos/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Metabolômica , Modelos Biológicos , Ratos
15.
J Toxicol Environ Health A ; 85(1): 1-13, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34445937

RESUMO

Prenatal exposure to valproic acid (VPA) has been implicated in the manifestation of autism spectrum disorder (ASD)-like behavioral and functional changes both in human and rodents including mice and rats. The objective of this study was to determine metabolomics profiling and biomarkers related to VPA-induced symptoms resembling ASD using proton nuclear magnetic resonance (1H-NMR) spectral data. VPA was administered to pregnant rats at gestation day 12.5 and effects measured subsequently in male 4-week-old offspring pups. The sociability of VPA-treated animals was significantly diminished and exhibited ASD-like behavior as evidenced by reduction of social adaptation disorder and lack of social interactions. To find biomarkers related to ASD, the following were collected prefrontal brain cortices, urine bladder and blood samples directly from heart puncture. In all samples, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) displayed significant clustering pattern differences between control and treated groups. Valine, taurine, myo-inositol, 3-hydroxybutyrate and 1,3-dihydroxyacetone were significantly decreased in brain cortices in treated rats. Serum metabolites of glucose, creatine phosphate, lactate, glutamine and threonine were significantly increased in VPA-administered animals. Urinary metabolites of pimelate, 3-hydroxyisovalerate and valerate were significantly reduced in VPA-treated rat, whereas galactose and galactonate levels were elevated. Various metabolites were associated with mitochondrial dysfunction metabolism and central nervous system disorders. Data demonstrated that VPA-induced alterations in endogenous metabolites of serum, urine, and brain cortex which might prove useful as biomarkers for symptoms resembling ASD as a model of this disorder.


Assuntos
Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Ácido Valproico/toxicidade , Animais , Transtorno do Espectro Autista/etiologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Feminino , Masculino , Exposição Materna/efeitos adversos , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Ratos
16.
NMR Biomed ; 35(6): e4682, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959254

RESUMO

High-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) is a useful metabolic profiling technique for human tissue. However, the impact of intratumoral heterogeneity on the metabolite levels of breast cancers is not yet established. The purpose of this prospective study was to investigate whether the tumor cell fraction of core needle biopsy (CNB) specimens of breast cancers affect metabolic profiles assessed with HR-MAS MRS. From June 2015 to December 2016, 46 patients with 47 breast cancers were enrolled. HR-MAS MRS was used for the metabolic profiling of 285 CNB specimens from the 47 cancers. Multiple CNB samples (range 2-8) for the HR-MAS MRS experiment were obtained from surgical specimens under ultrasound guidance following surgical removal of the tumor. Tumor cell fraction was expressed as a percentage of the tumor cell volume relative to the total tumor volume contained in each CNB sample. Metabolite quantification levels were compared according to primary tumor characteristics using the t-test. Multivariate analyses were performed including primary tumor characteristics and tumor cell percentages as variables. Correlations between tumor cell percentage and metabolite levels in the CNB specimens were assessed according to the immunohistochemical status of the primary tumor. In univariate analysis, levels of choline-containing compounds, glutamate, glutamine, glycine, serine, and taurine were correlated with primary tumor characteristics. In multivariate analysis, most metabolite levels were not affected by tumor cell percentage. Tumor cell percentage showed poor correlation with metabolite levels in hormone receptor-positive cancer and triple-negative cancer, and poor to fair correlation with metabolite levels in HER2-positive cancer. This study showed that differences in the tumor cell fraction of CNB samples do not affect predictions on the primary cancer from which the samples are obtained.


Assuntos
Neoplasias da Mama , Biópsia com Agulha de Grande Calibre , Neoplasias da Mama/patologia , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Estudos Prospectivos
17.
Foods ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829088

RESUMO

The purpose of the present study was to explore the efficacy of fermented extract of sea tangle (Laminaria japonica Aresch, FST) with Lactobacillus brevis on DNA damage and apoptosis in hydrogen peroxide (H2O2)-stimulated osteoblastic MC3T3-E1 cells and clarify related signaling pathways. Our results showed that exposure to FST significantly improved cell viability, inhibited apoptosis, and suppressed the generation of reactive oxygen species (ROS) in H2O2-stimulated cells. In addition, H2O2 triggered DNA damage in MC3T3-E1 cells was markedly attenuated by FST pretreatment. Moreover, H2O2-induced mitochondrial dysfunctions associated with apoptotic events, including loss of mitochondrial membrane potential (MMP), decreased Bcl-2/Bcl-2 associated x-protein (Bax) ratio, and cytosolic release of cytochrome c, were reduced in the presence of FST. FST also diminished H2O2-induced activation of caspase-3, which was associated with the ability of FST to protect the degradation of poly (ADP-ribose) polymerase. Furthermore, FST notably enhanced nuclear translocation and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of H2O2 with concomitant upregulation of heme oxygenase-1 (HO-1) expression. However, artificial blockade of this pathway by the HO-1 inhibitor, zinc protoporphyrin IX, greatly abolished the protective effect of FST against H2O2-induced MC3T3-E1 cell injury. Taken together, these results demonstrate that FST could protect MC3T3-E1 cells from H2O2-induced damage by maintaining mitochondrial function while eliminating ROS along with activation of the Nrf2/HO-1 antioxidant pathway.

18.
Biosensors (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34821655

RESUMO

Bacterial infections in fish farms increase mass mortality and rapid detection of infection can help prevent its widespread. Lactate is an important biomarker for early diagnosis of bacterial infections in farmed olive flounder (Paralichthys olivaceus). To determine the lactate levels, we designed a disposable amperometric biosensor based on Prussian blue nanozyme and lactate oxidase (LOX) entrapped in copolymer-reduced graphene oxide (P-rGO) on screen-printed carbon electrodes. Because LOX is inherently unstable, P-rGO nanosheets were utilized as a base matrix to immobilize it. After optimization in terms of enzyme loading, operating potential, and pH, the biosensor displayed maximum current responses within 5 s at the applied potential of -0.1 V vs. internal Ag/AgCl. The biosensor had Langmuir-type response in the lactate concentration range from 10 µM to 1.6 mM, a dynamic linear response range of 10-100 µM, a sensitivity of 15.9 µA mM-1 cm-2, and a lower detection limit of 3.1 µM (S/N = 3). Additionally, the biosensor featured high reproducibility, good selectivity, and stability till four weeks. Its practical applicability was tested in olive flounder infected by Streptococcus parauberis against the uninfected control. The results were satisfactory compared to those of a standard colorimetric assay kit, validating our method.


Assuntos
Técnicas Biossensoriais , Doenças dos Peixes , Linguado , Ácido Láctico/análise , Infecções Estreptocócicas , Animais , Doenças dos Peixes/diagnóstico , Reprodutibilidade dos Testes , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/veterinária
19.
J Bacteriol ; 203(23): e0040221, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34516281

RESUMO

Mycobacterium smegmatis has two isocitrate lyase (ICL) isozymes (MSMEG_0911 and MSMEG_3706). We demonstrated that ICL1 (MSMEG_0911) is the predominantly expressed ICL in M. smegmatis and plays a major role in growth on acetate or fatty acid as the sole carbon and energy source. Expression of the icl1 gene in M. smegmatis was demonstrated to be strongly upregulated during growth on acetate relative to that in M. smegmatis grown on glucose. Expression of icl1 was shown to be positively regulated by the RamB activator, and three RamB-binding sites (RamBS1, RamBS2, and RamBS3) were identified in the upstream region of icl1 using DNase I footprinting analysis. Succinyl coenzyme A (succinyl-CoA) was shown to increase the affinity of binding of RamB to its binding sites and enable RamB to bind to RamBS2, which is the most important site for RamB-mediated induction of icl1 expression. These results suggest that succinyl-CoA serves as a coinducer molecule for RamB. Our study also showed that cAMP receptor protein (Crp1; MSMEG_6189) represses icl1 expression in M. smegmatis grown in the presence of glucose. Therefore, the strong induction of icl1 expression during growth on acetate as the sole carbon source relative to the weak expression of icl1 during growth on glucose is likely to result from combined effects of RamB-mediated induction of icl1 in the presence of acetate and Crp-mediated repression of icl1 in the presence of glucose. IMPORTANCE Carbon flux through the glyoxylate shunt has been suggested to affect virulence, persistence, and antibiotic resistance of Mycobacterium tuberculosis. Therefore, it is important to understand the precise mechanism underlying the regulation of the icl gene encoding the key enzyme of the glyoxylate shunt. Using Mycobacterium smegmatis, this study revealed the regulation mechanism underlying induction of icl1 expression in M. smegmatis when the glyoxylate shunt is required. The conservation of the cis- and trans-acting regulatory elements related to icl1 regulation in both M. smegmatis and M. tuberculosis implies that a similar regulatory mechanism operates for the regulation of icl1 expression in M. tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Isocitrato Liase/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Ácidos Graxos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Isocitrato Liase/genética , Isoenzimas , Mycobacterium smegmatis/genética
20.
Metabolites ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34564407

RESUMO

Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the most prevalent cancer among urological cancers. However, there are no cancer-specific symptoms that can differentiate them as well as early clinical signs of urological malignancy. Furthermore, many metabolic studies have been conducted to discover their biomarkers, but the metabolic profiling study to discriminate between these cancers have not yet been described. Therefore, in this study, we aimed to investigate the urinary metabolic differences in male patients with PCa (n = 24), BCa (n = 29), and RCC (n = 12) to find the prominent combination of metabolites between cancers. Based on 1H NMR analysis, orthogonal partial least-squares discriminant analysis was applied to find distinct metabolites among cancers. Moreover, the ranked analysis of covariance by adjusting a potential confounding as age revealed that 4-hydroxybenzoate, N-methylhydantoin, creatinine, glutamine, and acetate had significantly different metabolite levels among groups. The receiver operating characteristic analysis created by prominent five metabolites showed the great discriminatory accuracy with area under the curve (AUC) > 0.7 for BCa vs. RCC, PCa vs. BCa, and RCC vs. PCa. This preliminary study compares the metabolic profiles of BCa, PCa, and RCC, and reinforces the exploratory role of metabolomics in the investigation of human urine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...