Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693114

RESUMO

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Assuntos
Fibrose , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Miócitos Cardíacos , Organoides , Humanos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Organoides/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia
2.
Biochem Biophys Res Commun ; 699: 149561, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280307

RESUMO

In mouse B lymphocytes, an unidentified slow-activating voltage-dependent current resembling the characteristics of the Calhm family ion channel (ICalhm-L) was investigated. RT-PCR analysis revealed the presence of Calhm2 and 6 transcripts, with subsequent whole-cell patch-clamp studies indicating that the ICalhm-L is augmented by heat, alkaline pH, and low extracellular [Ca2+]. Overexpression of Calhm2, but not Calhm6, in N2A cells recapitulated ICalhm-L. Moreover, Calhm2 knockdown in Bal-17 cells abolished ICalhm-L. We firstly identify the voltage-dependent ion channel function of the Calhm2 in the mouse immune cells. ATP release assays in primary mouse B cells suggested a significant contribution of Calhm2 for purinergic signaling at physiological temperature.


Assuntos
Cálcio , Canais Iônicos , Camundongos , Animais , Cálcio/metabolismo , Transdução de Sinais , Homeostase
3.
Biochem Biophys Res Commun ; 692: 149332, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043155

RESUMO

Transient receptor potential vanilloid-3 (TRPV3) ion channels are prominently expressed in keratinocytes, playing a vital role in skin functions. Honokiol and magnolol (H&M) the primary bioactive constituents in Magnolia officinalis extract, demonstrate anti-inflammatory and skin-protective properties. Nevertheless, the underlying mechanism regarding their effect on Ca2+-permeable ion channels remain unclear. Our purpose in this study is to investigate the effect of H&M on TRPV3 and cytokine release in normal human epidermal keratinocytes (NHEKs), including its gain-of-function (GOF) mutants (G573S and G573C) associated with Olmstead syndrome. We performed whole-cell patch-clamp, fura-2 spectrofluorimetry to investigate channels activity, CCK-8 assay to analyze cell death and enzyme-linked immunosorbent assay to assess the cytokine release from NHEKs. H&M inhibited the TRPV3 current (ITRPV3) and cytosolic calcium increase in NHEKs, HEK293T cells overexpressing hTRPV3 and its GOF mutants. Moreover, the release of pro-inflammatory cytokines (interleukin-6 and -8) from keratinocytes stimulated by TRPV3 agonist was effectively suppressed by H&M. Our findings provide insights into the mechanism underlying the anti-inflammatory effects of H&M, highlighting their potential in treating skin diseases.


Assuntos
Citocinas , Queratinócitos , Humanos , Citocinas/metabolismo , Células HEK293 , Queratinócitos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Canais Iônicos/metabolismo , Canais de Cátion TRPV/metabolismo
4.
Mol Neurobiol ; 61(3): 1687-1703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37755583

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation under investigation for treatment of a wide range of neurological disorders. In particular, the therapeutic application of rTMS for neurodegenerative diseases such as Alzheimer's disease (AD) is attracting attention. However, the mechanisms underlying the therapeutic efficacy of rTMS have not yet been elucidated, and few studies have systematically analyzed the stimulation parameters. In this study, we found that treatment with rTMS contributed to restoration of memory deficits by activating genes involved in synaptic plasticity and long-term memory. We evaluated changes in several intracellular signaling pathways in response to rTMS stimulation; rTMS treatment activated STAT, MAPK, Akt/p70S6K, and CREB signaling. We also systematically investigated the influence of rTMS parameters. We found an effective range of applications for rTMS and determined the optimal combination to achieve the highest efficiency. Moreover, application of rTMS inhibited the increase in cell death induced by hydrogen peroxide. These results suggest that rTMS treatment exerts a neuroprotective effect on cellular damage induced by oxidative stress, which plays an important role in the pathogenesis of neurological disorders. rTMS treatment attenuated streptozotocin (STZ)-mediated cell death and AD-like pathology in neuronal cells. In an animal model of sporadic AD caused by intracerebroventricular STZ injection, rTMS application improved cognitive decline and showed neuroprotective effects on hippocampal histology. Overall, this study will help in the design of stimulation protocols for rTMS application and presents a novel mechanism that may explain the therapeutic effects of rTMS in neurodegenerative diseases, including AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Estimulação Magnética Transcraniana/métodos , Doença de Alzheimer/metabolismo , Estreptozocina , Hipocampo/metabolismo
5.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
6.
Korean J Physiol Pharmacol ; 28(1): 49-57, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154964

RESUMO

While arterial tone is generally determined by the phosphorylation of Ser19 in myosin light chain (p-MLC2), Thr18/Ser19 diphosphorylation of MLC2 (pp-MLC2) has been suggested to hinder the relaxation of smooth muscle. In a dual-wire myography of rodent pulmonary artery (PA) and mesenteric artery (MA), we noticed significantly slower relaxation in PA than in MA after 80 mM KCl-induced condition (80K-contraction). Thus, we investigated the MLC2 phosphorylation and the expression levels of its regulatory enzymes; soluble guanylate cyclase (sGC), Rho-A dependent kinase (ROCK) and myosin light chain phosphatase target regulatory subunit (MYPT1). Immunoblotting showed higher sGC-α and ROCK2 in PA than MA, while sGC-ß and MYPT1 levels were higher in MA than in PA. Interestingly, the level of pp-MLC2 was higher in PA than in MA without stimulation. In the 80K-contraction state, the levels of p-MLC2 and pp-MLC2 were commonly increased. Treatment with the ROCK inhibitor (Y27632, 10 µM) reversed the higher pp-MLC2 in PA. In the myography study, pharmacological inhibition of sGC (ODQ, 10 µM) slowed relaxation during washout, which was more pronounced in PA than in MA. The simultaneous treatment of Y27632 and ODQ reversed the impaired relaxation in PA and MA. Although treatment of PA with Y27632 alone could increase the rate of relaxation, it was still slower than that of MA without Y27632 treatment. Taken together, we suggest that the higher ROCK and lower MYPT in PA would have induced the higher level of MLC2 phosphorylation, which is responsible for the characteristic slow relaxation in PA.

7.
Sci Rep ; 13(1): 12227, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507537

RESUMO

Daptomycin is a cyclic lipodepsipeptide antibiotic reserved for the treatment of serious infections by multidrug-resistant Gram-positive pathogens. Its mode of action is considered to be multifaceted, encompassing the targeting and depolarization of bacterial cell membranes, alongside the inhibition of cell wall biosynthesis. To characterize the daptomycin mode of action, 15N cross-polarization at magic-angle spinning NMR measurements were performed on intact whole cells of Staphylococcus aureus grown in the presence of a sub-inhibitory concentration of daptomycin in a chemically defined media containing L-[ϵ-15N]Lys. Daptomycin-treated cells showed a reduction in the lysyl-ε-amide intensity that was consistent with cell wall thinning. However, the reduced lysyl-ε-amine intensity at 10 ppm indicated that the daptomycin-treated cells did not accumulate in Park's nucleotide, the cytoplasmic peptidoglycan (PG) precursor. Consequently, daptomycin did not inhibit the transglycosylation step of PG biosynthesis. To further elucidate the daptomycin mode of action, the PG composition of daptomycin-susceptible Enterococcus faecalis grown in the presence of daptomycin was analyzed using liquid chromatography-mass spectrometry. Sixty-nine muropeptide ions correspond to PG with varying degrees of modifications including crosslinking, acetylation, alanylation, and 1,6-anhydrous ring formation at MurNAc were quantified. Analysis showed that the cell walls of daptomycin-treated E. faecalis had a significant reduction in PG crosslinking which was accompanied by an increase in lytic transglycosylase activities and a decrease in PG-stem modifications by the carboxypeptidases. The changes in PG composition suggest that daptomycin inhibits cell wall biosynthesis by impeding the incorporation of nascent PG into the cell walls by transpeptidases and maturation by carboxypeptidases. As a result, the newly formed cell walls become highly susceptible to degradation by the autolysins, resulting in thinning of the cell wall.


Assuntos
Daptomicina , Daptomicina/farmacologia , Enterococcus faecalis , Antibacterianos/metabolismo , Peptidoglicano/metabolismo , Parede Celular/metabolismo
8.
Pflugers Arch ; 475(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422604

RESUMO

Phosphorylation of Ser19 (S19-p) on the myosin regulatory light chain (MLC2) is critical for arterial contraction. It has been shown that elevated RhoA-dependent kinase (ROCK) activity or decreased MLC phosphatase (MLCP) activity leads to further phosphorylation of Thr18 (T18/S19-pp), which has been linked to vasospastic diseases. However, this phenomenon has not yet been studied in the context of pulmonary arterial hypertension (PAH). In the monocrotaline-induced PAH (PAH-MCT) rat model, we observed a significant delay in pulmonary artery (PA) relaxation following high potassium-induced contraction, which persisted even with the use of an L-type calcium channel blocker or in a calcium-free solution. Immunoblot analysis showed increased levels of both S19-p and T18/S19-pp in unstimulated PAs from PAH-MCT rats. Proteomics analysis revealed a reduction in soluble guanylate cyclase (sGC) and protein kinase G (PKG) levels, and immunoblotting confirmed decreased levels of MYPT1 (a component of MLCP) and increased ROCK in PAH-MCT. In the control PAs, the pharmacological inhibition of sGC with ODQ resulted in a prominent delay of relaxation and increased T18/S19-pp as in PAH-MCT. The delayed relaxation and the T18/S19-pp in PAH-MCT were reversed by ROCK inhibitor, Y27632, while not by membrane permeable 8-Br-cGMP. The delayed relaxation and T18/S19-diP in the ODQ-treated control PA were also reversed by Y27632. Taken together, the decreased sGC and MLCP, and increased ROCK increased T18/S19-pp, which leads to the decreased ability of PA to relax in PAH-MCT rats. PA specific inhibition of ROCK or activation of MLCP are expected to serve as potential drugs in the treatment of PAH.


Assuntos
Hipertensão , Artéria Pulmonar , Ratos , Animais , Artéria Pulmonar/metabolismo , Cadeias Leves de Miosina/metabolismo , Monocrotalina , Quinases Associadas a rho/metabolismo
9.
Biomed Pharmacother ; 164: 114952, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295249

RESUMO

KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.


Assuntos
Canais de Potássio KCNQ , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Humanos , Ratos , Canais de Potássio KCNQ/genética , Morfolinos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Vasodilatadores/farmacologia
10.
J Plast Reconstr Aesthet Surg ; 83: 84-88, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271000

RESUMO

BACKGROUND: There is a disparity in access, quality, and sustainability of cleft care in low and middle income countries, where burden of disease is greatest. CLEFT-Bridging the Gap (registered charity number: 1194581) is a UK-based charity that aims is to solve this through teaching, empowerment and development of sustainable cleft services. A Student Section, composed of medical, dental and speech and language therapy students, was established to support these endeavours through fundraising. AIMS: 1) examine effectiveness of the Student Section, 2) explore students' perception of cleft care, 3) provide a framework for similar groups. METHODS: Cross-sectional survey study design. Likert-Scale responses to questions regarding organisation and experience of the section were collected. Data was analysed using Chi statistical test, ordinal data assessed using Wilcoxon-Signed Rank test. RESULTS: 40/64 ambassadors responded to the survey. 90% had a positive perception on the organisation of the section, this correlated with group size (p = 0.012) and number of fundraising events organised (p = 0.032). 85% had an overall positive experience, scores for consideration of a career in cleft significantly improved from 2.25 (95%CI: 1.95-2.55) to 3.30 (95%CI: 3.03-3.57) (p < 0.001). CONCLUSION: This study presents the first example of a nationwide student group involved with a charitable cleft organisation.


Assuntos
Instituições de Caridade , Fissura Palatina , Obtenção de Fundos , Estudantes de Ciências da Saúde , Estudantes de Medicina , Fonoterapia , Estudantes de Odontologia , Reino Unido
11.
Phytomedicine ; 115: 154791, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094425

RESUMO

BACKGROUND: α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed. HYPOTHESIS: We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons. METHODS: We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively. RESULTS: Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K+ conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K+ channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na+ channel (NaV) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and NaV channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier. CONCLUSION: The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive NaV current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.


Assuntos
Gânglios Espinais , Neurônios , Camundongos , Humanos , Animais , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacologia , Células HEK293 , Simulação de Acoplamento Molecular
12.
Exp Mol Med ; 55(5): 965-973, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121973

RESUMO

Insulin and insulin-like growth factor 1 (IGF-1) signaling regulate cellular growth and glucose metabolism in the myocardium. However, their physiological role in the cells of the cardiac conduction system has never been explored. Therefore, we sought to determine the spatiotemporal function of insulin/IGF-1 receptors in the sinoatrial node (SAN). We generated cardiac conduction cell-specific inducible IGF-1 receptor (IGF-1R) knockout (KO) (CSIGF1RKO), insulin receptor (IR) KO (CSIRKO), and IR/IGF-1R double-KO (CSDIRKO) mice and evaluated their phenotypes. Telemetric electrocardiography revealed regular sinus rhythm in CSIGF1RKO mice, indicating that IGF-1R is dispensable for normal pacemaking. In contrast, CSIRKO and CSDIRKO mice exhibited profound sinus bradycardia. CSDIRKO mice showed typical sinus node dysfunction characterized by junctional rhythm and sinus pauses on electrocardiography. Interestingly, the lack of an insulin receptor in the SAN cells of CSIRKO and CSDIRKO mice caused sinus nodal fibrosis. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) protein expression significantly decreased in the CSIRKO and CSDIRKO mice relative to the controls. A patch-clamp study of the SAN cells of CSIRKO mice revealed a significant decrease in the funny current, which is responsible for spontaneous diastolic depolarization in the SAN. This result suggested that insulin receptor loss reduces the heart rate via downregulation of the HCN4 channel. Additionally, HCN1 expression was decreased in CSDIRKO mice, explaining their sinus node dysfunction. Our results reveal a previously unrecognized role of insulin/IGF-1 signaling in sinus node structural maintenance and pacemaker function.


Assuntos
Síndrome do Nó Sinusal , Nó Sinoatrial , Camundongos , Animais , Nó Sinoatrial/metabolismo , Síndrome do Nó Sinusal/metabolismo , Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo
13.
Sci Adv ; 9(13): eadf6856, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000879

RESUMO

The implantable cardioverter-defibrillator (ICD) is an effective method to prevent sudden cardiac death in high-risk patients. However, the transvenous lead is incompatible with large-area electrophysiological mapping and cannot accommodate selective multichannel precision stimulations. Moreover, it involves high-energy shocks, resulting in pain, myocardial damage, and recurrences of ventricular tachyarrhythmia (VTA). We present a method for VTA treatment based on subthreshold electrical stimulations using a stretchable epicardial multichannel electrode array, which does not disturb the normal contraction or electrical propagation of the ventricle. In rabbit models with myocardial infarction, the infarction was detected by mapping intracardiac electrograms with the stretchable epicardial multichannel electrode array. Then, VTAs could be terminated by sequential electrical stimuli from the epicardial multichannel electrode array beginning with low-energy subthreshold stimulations. Last, we used these subthreshold stimulations to prevent the occurrence of additional VTAs. The proposed protocol using the stretchable epicardial multichannel electrode array provides opportunities toward the development of innovative methods for painless ICD therapy.


Assuntos
Desfibriladores Implantáveis , Infarto do Miocárdio , Taquicardia Ventricular , Coelhos , Animais , Taquicardia Ventricular/terapia , Taquicardia Ventricular/epidemiologia , Taquicardia Ventricular/etiologia , Desfibriladores Implantáveis/efeitos adversos , Ventrículos do Coração , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/epidemiologia , Infarto do Miocárdio/terapia , Infarto do Miocárdio/etiologia
14.
Mar Drugs ; 21(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36827119

RESUMO

Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 µM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.


Assuntos
Naftoquinonas , Humanos , Células HEK293 , Fenômenos Fisiológicos da Pele
15.
Am J Physiol Cell Physiol ; 324(1): C98-C112, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409172

RESUMO

Calcium homeostasis modulator 1 (CALHM1), a newly discovered voltage-dependent nonselective ion channel, has drawn attention for its role in neuronal activity and taste sensation. Its sluggish voltage-dependent activation is facilitated by lowering extracellular Ca2+ concentration ([Ca2+]e). Here, we investigated the effects of extracellular and intracellular pH (pHe and pHi) on human CALHM1. When normalized to the amplitude of the CALHM1 current (ICALHM1) under whole cell patch clamp at symmetrical pH 7.4, ICALHM1 decreased at acidic pHe or pHi, whereas it sharply increased at alkaline pHe or pHi. The effects of pH were preserved in the inside-out configuration. The voltage dependence of ICALHM1 showed leftward and rightward shifts at alkaline and acidic pHe and pHi, respectively. Site-directed mutagenesis of the water-accessible charged residues of the pore and nearby domains revealed that E17, K229, E233, D257, and E259 are nonadditively responsible for facilitation at alkaline pHi. Identification of the pHe-sensing residue was not possible because mutation of putative residues impaired membrane expression, resulting in undetectable ICALHM1. Alkaline pHe-dependent facilitation appeared gradually with depolarization, suggesting that the sensitivity to pHe might be due to H+ diffusion through the open-state CALHM1. At pHe 6.2, decreased [Ca2+]e could not recover the inhibited ICALHM1 but further augmented the increased ICALHM1 at pHe 8.6, suggesting that unidentified common residues might contribute to the [Ca2+]e and acidic pHe. This study is the first, to our knowledge, to demonstrate the remarkable pH sensitivity of CALHM1, which might contribute to the pH-dependent modulation of neuronal excitability or taste sensation.


Assuntos
Neurônios , Prótons , Humanos , Membrana Celular , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana , Canais de Cálcio
16.
Transl Oncol ; 26: 101546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183673

RESUMO

GV1001, a human telomerase reverse transcriptase catalytic subunit-derived 16-mer peptide, has been developed as a novel anticancer vaccine against various cancers including pancreatic cancer. In the current study, we demonstrate the regulatory roles and mechanisms of GV1001 in endothelial cell responses in vitro and microvessel sprouting ex vivo. GV1001 markedly inhibits vascular endothelial growth factor-A (VEGF-A)-stimulated endothelial cell permeability, proliferation, migration, invasion, tube formation as well as microvessel outgrowth from rat aortic rings. These anti-angiogenic effects of GV1001 were associated with the inhibition of VEGF-A/VEGFR-2 signaling pathways, redistribution of vascular endothelial-cadherin to cell-cell contacts, and down-regulation of VEGFR-2 and matrix metalloproteinase-2. Furthermore, GV1001 suppresses the proliferation and invasion of non-small cell lung cancer cells, and the release of VEGF from the cells, suggesting the regulatory role of GV1001 in tumor-derived angiogenesis as well as cancer cell growth and progression. Collectively, our study reports the pharmacological potential of GV1001 in the regulation of angiogenesis, and warrants further evaluation and development of GV1001 as a promising therapeutic agent for a variety of angiogenesis-related diseases including cancer.

17.
J Enzyme Inhib Med Chem ; 37(1): 2434-2451, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069240

RESUMO

In an effort to discover novel scaffolds of non-nucleotide-derived Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) inhibitors to stimulate the Stimulator of Interferon Genes (STING) pathway, we designed and synthesised pyrrolopyrimidine and pyrrolopyridine derivatives and performed structure-activity relationship (SAR) study. We found 18p possessed high potency (IC50 = 25.0 nM) against ENPP1, and activated STING pathway in a concentration dependent manner. Also, in response to STING pathway activation, cytokines such as IFN-ß and IP-10 were induced by 18p in a concentration dependent manner. Finally, we discovered that 18p causes inhibition of tumour growth in 4T1 syngeneic mouse model. This study provides new insight into the designing of novel ENPP1 inhibitors and warrants further development of small molecule immune modulators for cancer immunotherapy.


Assuntos
Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas , Pirofosfatases/genética , Pirofosfatases/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 75: 128947, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995398

RESUMO

Ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) negatively regulates the anti-cancer Stimulator of Interferon Genes (STING) pathway. We discovered that 3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one and 3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-one derivatives possessed inhibitory activities on ENPP1. A structure-activity relationship (SAR) study led to the identification of 46 and 23 as potent ENPP1 inhibitors. Also, compounds 46 and 23 possessed high microsomal stabilities in human, rat, and mouse liver microsome. Additionally, CYPs (1A2, 2C9, 2C19, 2D6, and 3A4) were not inhibited by 46 and 23. Molecular dynamics simulations provided an insight of binding modes between ENPP1 and compounds (46 and 23).


Assuntos
Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Humanos , Interferons , Camundongos , Microssomos Hepáticos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Ratos , Relação Estrutura-Atividade
19.
Eur J Pharmacol ; 927: 175055, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644420

RESUMO

The large-conductance Ca2+-activated K+ channel (BKCa channel) is involved in repolarizing the membrane potential and has a variety of cellular functions. The BKCa channel is highly expressed in bladder smooth muscle and mediates muscle relaxation. Compounds that activate the BKCa channel have therapeutic potential against pathological symptoms associated with the overactivity of bladder smooth muscle. In this regard, we screened a chemical library of 9938 compounds to identify novel BKCa channel activators. A cell-based fluorescence assay identified a structural family of compounds containing a common tricyclic quinazoline ring that activated the BKCa channel. The most potent compound TTQC-1 (7-bromo-N-(3-methylphenyl)-5-oxo-1-thioxo-4,5-dihydro[1,3]thiazolo[3,4-a]quinazoline-3-carboxamide) directly and reversibly activated the macroscopic current of BKCa channels expressed in Xenopus oocytes from both sides of the cellular membrane. TTQC-1 increased the maximum conductance and shifted the half activation voltage to the left. The apparent half-maximal effective concentration and dissociation constant were 2.8 µM and 7.95 µM, respectively. TTQC-1 delayed the kinetics of channel deactivation without affecting channel activation. The activation effects were observed over a wide range of intracellular Ca2+ concentrations and dependent on the co-expression of ß1 and ß4 auxiliary subunits, which are highly expressed in urinary bladder. In the isolated smooth muscle cells of rat urinary bladder, TTQC-1 increased the K+ currents which can be blocked by iberiotoxin. Finally, oral administration of TTQC-1 to hypertensive rats decreased the urination frequency. Therefore, TTQC-1 is a BKCa channel activator with a novel structure that is a potential therapeutic candidate for BKCa channel-related diseases, such as overactive bladder syndrome.


Assuntos
Bexiga Urinária Hiperativa , Animais , Potenciais da Membrana , Relaxamento Muscular , Miócitos de Músculo Liso , Quinazolinas/farmacologia , Ratos , Bexiga Urinária Hiperativa/tratamento farmacológico
20.
Sci Rep ; 12(1): 11061, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773428

RESUMO

Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3→3 and 4→3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3→3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.


Assuntos
Mycobacterium smegmatis , Peptidoglicano , Proteínas de Bactérias/análise , Parede Celular/química , Cromatografia Líquida , Dissacarídeos/análise , Peptidoglicano/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...