Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 165: 153-167, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243378

RESUMO

Tumor angiogenesis is regarded as a promising target for limiting cancer progression because tumor-associated vasculature supplies blood and provides a path for metastasis. Thus, in vitro recapitulation of vascularized tumors is critical to understand the pathology of cancer and identify the mechanisms by which tumor cells proliferate, metastasize, and respond to drugs. In this study, we microengineered a vascularized tumor spheroid (VTS) model to reproduce the pathological features of solid tumors. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Notably, the hybrid spheroids also exhibited expression profiles associated with aggressive behavior. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. With the VTS chip showing a progressive tumor phenotype, we validated the suppressive effects of axitinib on tumor growth and angiogenesis, which depended on exposure dose and time, highlighting the significance of tumor vascularization to predict the efficacy of anticancer drugs. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow. Thus, our VTS model is a valuable platform with which to investigate the interactions between tumor microenvironments and explore therapeutic strategies in cancer. STATEMENT OF SIGNIFICANCE: We conducted an integrative study within a vascularized tumor spheroid (VTS) model. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Through RNA sequencing, we elucidated that the tumor-EC hybrid spheroids exhibited expression profiles associated with aggressive behavior such as cancer progression, invasion and metastasis. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. We further validated the suppressive effects of axitinib on tumor growth and angiogenesis, depending on exposure dose and time. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares/patologia , Axitinibe/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Microambiente Tumoral
2.
Sci Adv ; 8(46): eadd9419, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383671

RESUMO

Two-dimensional (2D) histopathology based on the observation of thin tissue slides is the current paradigm in diagnosis and prognosis. However, labeling strategies in conventional histopathology are limited in compatibility with 3D imaging combined with tissue clearing techniques. Here, we present a rapid and efficient volumetric imaging technique of pathological tissues called 3D tissue imaging through de novo formation of fluorophores, or 3DNFC, which is the integration of citrate-based fluorogenic reaction DNFC and tissue clearing techniques. 3DNFC markedly increases the fluorescence intensity of tissues by generating fluorophores on nonfluorescent amino-terminal cysteine and visualizes the 3D structure of the tissues to provide their anatomical morphology and volumetric information. Furthermore, the application of 3DNFC to pathological tissue achieves the 3D reconstruction for the unbiased analysis of diverse features of the disorders in their natural context. We suggest that 3DNFC is a promising volumetric imaging method for the prognosis and diagnosis of pathological tissues.

3.
Exp Mol Med ; 54(4): 349-357, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474340

RESUMO

As the principal means of acquiring nutrients, feeding behavior is indispensable to the survival and well-being of animals. In response to energy or nutrient deficits, animals seek and consume food to maintain energy homeostasis. On the other hand, even when animals are calorically replete, non-homeostatic factors, such as the sight, smell, and taste of palatable food, or environmental cues that predict food, can stimulate feeding behavior. These homeostatic and non-homeostatic factors have traditionally been investigated separately, but a growing body of literature highlights that these factors work synergistically to promote feeding behavior. Furthermore, recent breakthroughs in cell type-specific and circuit-specific labeling, recording, and manipulation techniques have markedly accelerated the discovery of well-defined neural populations underlying homeostatic and non-homeostatic appetite control, as well as overlapping circuits that contribute to both types of appetite. This review aims to provide an update on our understanding of the neural circuit mechanisms for promoting homeostatic and non-homeostatic appetites, focusing on the function of recently identified, genetically defined cell types.


Assuntos
Apetite , Encéfalo , Animais , Encéfalo/metabolismo , Comportamento Alimentar , Homeostase/fisiologia
4.
Nat Rev Neurosci ; 23(3): 135-156, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34983992

RESUMO

Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.


Assuntos
Regulação do Apetite , Ingestão de Alimentos , Vias Aferentes/fisiologia , Regulação do Apetite/fisiologia , Trato Gastrointestinal , Humanos , Estômago/fisiologia
5.
Neuron ; 110(2): 266-279.e9, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34687664

RESUMO

Thermoregulatory behavior is a basic motivated behavior for body temperature homeostasis. Despite its fundamental importance, a forebrain region or defined neural population required for this process has yet to be established. Here, we show that Vgat-expressing neurons in the lateral hypothalamus (LHVgat neurons) are required for diverse thermoregulatory behaviors. The population activity of LHVgat neurons is increased during thermoregulatory behavior and bidirectionally encodes thermal punishment and reward (P&R). Although this population also regulates feeding and caloric reward, inhibition of parabrachial inputs selectively impaired thermoregulatory behaviors and encoding of thermal stimulus by LHVgat neurons. Furthermore, two-photon calcium imaging revealed a subpopulation of LHVgat neurons bidirectionally encoding thermal P&R, which is engaged during thermoregulatory behavior, but is largely distinct from caloric reward-encoding LHVgat neurons. Our data establish LHVgat neurons as a required neural substrate for behavioral thermoregulation and point to the key role of the thermal P&R-encoding LHVgat subpopulation in thermoregulatory behavior.


Assuntos
Região Hipotalâmica Lateral , Prosencéfalo , Regulação da Temperatura Corporal , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Recompensa
6.
Exp Neurobiol ; 31(6): 376-389, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36631846

RESUMO

The lateral septum (LS) is a forebrain structure that has been implicated in a wide range of behavioral and physiological responses to stress. However, the specific populations of neurons in the LS that mediate stress responses remain incompletely understood. Here, we show that neurons in the dorsal lateral septum (LSd) that express the somatostatin gene (hereafter, LSdSst neurons) are activated by diverse stressors. Retrograde tracing from LSdSst neurons revealed that these neurons are directly innervated by neurons in the locus coeruleus (LC), the primary source of norepinephrine well-known to mediate diverse stress-related functions in the brain. Consistently, we found that norepinephrine increased excitatory synaptic transmission onto LSdSst neurons, suggesting the functional connectivity between LSdSst neurons and LC noradrenergic neurons. However, optogenetic stimulation of LSdSst neurons did not affect stress-related behaviors or autonomic functions, likely owing to the functional heterogeneity within this population. Together, our findings show that LSdSst neurons are activated by diverse stressors and suggest that norepinephrine released from the LC may modulate the activity of LSdSst neurons under stressful circumstances.

7.
Nat Commun ; 12(1): 4730, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354063

RESUMO

Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Dispositivos Lab-On-A-Chip , Neurogênese/fisiologia , Organoides/crescimento & desenvolvimento , Organoides/fisiologia , Animais , Encéfalo/citologia , Meios de Cultura , Fenômenos Eletrofisiológicos , Matriz Extracelular/fisiologia , Estudos de Viabilidade , Perfilação da Expressão Gênica , Humanos , Hidrogéis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Anatômicos , Modelos Neurológicos , Neurogênese/genética , Neuroglia/citologia , Neuroglia/fisiologia , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Cultura de Órgãos/métodos , Organoides/citologia , Suínos
8.
ACS Appl Mater Interfaces ; 13(24): 28962-28974, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34107679

RESUMO

Expansion microscopy (ExM) is a technique in which swellable hydrogel-embedded biological samples are physically expanded to effectively increase imaging resolution. Here, we develop thermoresponsive reversible ExM (T-RevExM), in which the expansion factor can be thermally adjusted in a reversible manner. In this method, samples are embedded in thermoresponsive hydrogels and partially digested to allow for reversible swelling of the sample-gel hybrid in a temperature-dependent manner. We first synthesized hydrogels exhibiting lower critical solution temperature (LCST)- and upper critical solution temperature (UCST)-phase transition properties with N-alkyl acrylamide or sulfobetaine monomers, respectively. We then formed covalent hybrids between the LCST or UCST hydrogel and biomolecules across the cultured cells and tissues. The resulting hybrid could be reversibly swelled or deswelled in a temperature-dependent manner, with LCST- and UCST-based hybrids negatively and positively responding to the increase in temperature (termed thermonegative RevExM and thermopositive RevExM, respectively). We further showed reliable imaging of both unexpanded and expanded cells and tissues and demonstrated minimal distortions from the original sample using conventional confocal microscopy. Thus, T-RevExM enables easy adjustment of the size of biological samples and therefore the effective magnification and resolution of the sample, simply by changing the sample temperature.


Assuntos
Hidrogéis/química , Microscopia/métodos , Resinas Acrílicas/química , Animais , Encéfalo/anatomia & histologia , Células HeLa , Humanos , Camundongos , Transição de Fase , Temperatura
9.
Mol Cells ; 44(2): 63-67, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33594012

RESUMO

The bed nucleus of the stria terminalis (BNST)-a key part of the extended amygdala-has been implicated in the regulation of diverse behavioral states, ranging from anxiety and reward processing to feeding behavior. Among the host of distinct types of neurons within the BNST, recent investigations employing cell type- and projection-specific circuit dissection techniques (such as optogenetics, chemogenetics, deep-brain calcium imaging, and the genetic and viral methods for targeting specific types of cells) have highlighted the key roles of glutamatergic and GABAergic neurons and their axonal projections. As anticipated from their primary roles in excitatory and inhibitory neurotransmission, these studies established that the glutamatergic and GABAergic subpopulations of the BNST oppositely regulate diverse behavioral states. At the same time, these studies have also revealed unexpected functional specificity and heterogeneity within each subpopulation. In this Minireview, we introduce the body of studies that investigated the function of glutamatergic and GABAergic BNST neurons and their circuits. We also discuss unresolved questions and future directions for a more complete understanding of the cellular diversity and functional heterogeneity within the BNST.


Assuntos
Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Núcleos Septais/metabolismo , Animais , Comportamento , Humanos , Modelos Biológicos
10.
ACS Nano ; 15(1): 338-350, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33231435

RESUMO

Three-dimensional (3D) visualization of tumor vasculature is a key factor in accurate evaluation of RNA interference (RNAi)-based antiangiogenic nanomedicine, a promising approach for cancer therapeutics. However, this remains challenging because there is not a physiologically relevant in vitro model or precise analytic methodology. To address this limitation, a strategy based on 3D microfluidic angiogenesis-on-a-chip and 3D tumor vascular mapping was developed for evaluating RNAi-based antiangiogenic nanomedicine. We developed a microfluidic model to recapitulate functional 3D angiogenic sprouting when co-cultured with various cancer cell types. This model enabled efficient and rapid assessment of antiangiogenic nanomedicine in treatment of hyper-angiogenic cancer. In addition, tissue-clearing-based whole vascular mapping of tumor xenograft allowed extraction of complex 3D morphological information in diverse quantitative parameters. Using this 3D imaging-based analysis, we observed tumor sub-regional differences in the antiangiogenic effect. Our systematic strategy can help in narrowing down the promising targets of antiangiogenic nanomedicine and then enables deep analysis of complex morphological changes in tumor vasculature, providing a powerful platform for the development of safe and effective nanomedicine for cancer therapeutics.


Assuntos
Nanomedicina , Neoplasias , Humanos , Microfluídica , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Interferência de RNA
11.
Bioconjug Chem ; 31(7): 1784-1794, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32506906

RESUMO

Nanoparticles (NPs) are a promising carrier for cancer therapeutics. Systemically administered NPs are transported to tumor tissues via the bloodstream, extravasated from microvessels, and delivered to cancer cells. The distribution of NPs in the tumor vascular microenvironment critically determines the therapeutic efficacy of NP-delivered drugs, but its precise assessment in 3D across a large volume remains challenging. Here, an analytical platform-termed OMNIA (for Optical Mapping of Nanoparticles and Image Analysis)-integrating tissue clearing, high-resolution optical imaging, and semiautomated image analysis is presented, which enables accurate, unbiased, and quantitative analysis of the distribution of NPs in relation to the vasculature across a large 3D volume. Application of OMNIA to tumor tissues revealed higher accumulation and more efficient extravasation of NPs in the tumor periphery than the core. Time-course analysis demonstrated that the accumulation of NPs in tumor peaked at 24 h after injection, but the relative distribution of NPs from the vasculature remained remarkably stable over time. Comparisons between 45- and 200-nm-sized NPs showed a lower accumulation of smaller NPs in tumors relative to the liver, yet better vessel permeation. Together, our results demonstrate that OMNIA facilitates precise and reliable evaluation of NP biodistribution, and mechanistic investigations on NP delivery to tumor tissues.


Assuntos
Vasos Sanguíneos/metabolismo , Nanopartículas , Neoplasias/irrigação sanguínea , Imagem Óptica/métodos , Microambiente Tumoral , Animais , Humanos , Camundongos , Camundongos Nus , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Clin Invest ; 130(7): 3671-3683, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484458

RESUMO

The baroreceptor reflex is a powerful neural feedback that regulates arterial pressure (AP). Mechanosensitive channels transduce pulsatile AP to electrical signals in baroreceptors. Here we show that tentonin 3 (TTN3/TMEM150C), a cation channel activated by mechanical strokes, is essential for detecting AP changes in the aortic arch. TTN3 was expressed in nerve terminals in the aortic arch and nodose ganglion (NG) neurons. Genetic ablation of Ttn3 induced ambient hypertension, tachycardia, AP fluctuations, and impaired baroreflex sensitivity. Chemogenetic silencing or activation of Ttn3+ neurons in the NG resulted in an increase in AP and heart rate, or vice versa. More important, overexpression of Ttn3 in the NG of Ttn3-/- mice reversed the cardiovascular changes observed in Ttn3-/- mice. We conclude that TTN3 is a molecular component contributing to the sensing of dynamic AP changes in baroreceptors.


Assuntos
Aorta Torácica , Pressão Sanguínea , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Gânglio Nodoso , Pressorreceptores , Animais , Aorta Torácica/inervação , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Células HEK293 , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiopatologia , Pressorreceptores/metabolismo , Pressorreceptores/fisiopatologia , Taquicardia/genética , Taquicardia/metabolismo , Taquicardia/fisiopatologia
13.
Nature ; 580(7803): 376-380, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296182

RESUMO

Mechanosensory feedback from the digestive tract to the brain is critical for limiting excessive food and water intake, but the underlying gut-brain communication pathways and mechanisms remain poorly understood1-12. Here we show that, in mice, neurons in the parabrachial nucleus that express the prodynorphin gene (hereafter, PBPdyn neurons) monitor the intake of both fluids and solids, using mechanosensory signals that arise from the upper digestive tract. Most individual PBPdyn neurons are activated by ingestion as well as the stimulation of the mouth and stomach, which indicates the representation of integrated sensory signals across distinct parts of the digestive tract. PBPdyn neurons are anatomically connected to the digestive periphery via cranial and spinal pathways; we show that, among these pathways, the vagus nerve conveys stomach-distension signals to PBPdyn neurons. Upon receipt of these signals, these neurons produce aversive and sustained appetite-suppressing signals, which discourages the initiation of feeding and drinking (fully recapitulating the symptoms of gastric distension) in part via signalling to the paraventricular hypothalamus. By contrast, inhibiting the same population of PBPdyn neurons induces overconsumption only if a drive for ingestion exists, which confirms that these neurons mediate negative feedback signalling. Our findings reveal a neural mechanism that underlies the mechanosensory monitoring of ingestion and negative feedback control of intake behaviours upon distension of the digestive tract.


Assuntos
Ingestão de Alimentos , Retroalimentação , Neurônios/fisiologia , Animais , Encefalinas/genética , Encefalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Trato Gastrointestinal Superior/fisiologia
14.
Adv Sci (Weinh) ; 6(22): 1901673, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763149

RESUMO

Tissue expansion techniques physically expand swellable gel-embedded biological specimens to overcome the resolution limit of light microscopy. As the benefits of expansion come at the expense of signal concentration, imaging volume and time, and mechanical integrity of the sample, the optimal expansion ratio may widely differ depending on the experiment. However, existing expansion methods offer only fixed expansion ratios that cannot be easily adjusted to balance the gain and loss associated with expansion. Here, a hydrogel conversion-based expansion method is presented, that enables easy adjustment of the expansion ratio for individual needs, simply by changing the duration of a heating step. This method, termed ZOOM, isotropically expands samples up to eightfold in a single expansion process. ZOOM preserves biomolecules for post-processing labelings and supports multi-round expansion for the imaging of a single sample at multiple zoom factors. ZOOM can be flexibly and scalably applied to nanoscale imaging of diverse samples, ranging from cultured cells to thick tissues, as well as bacteria, exoskeletal Caenorhabditis elegans, and human brain samples.

15.
Mikrochim Acta ; 186(4): 211, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830307

RESUMO

A graphene oxide (GO)-based cost-effective, automatted strip test has developed for screening of inhibitors of endonuclease EcoRV. The method involves the use of GO and a DNA substrate for EcoRV that contains both an ssDNA region for binding of GO and a fluorescein amidite (FAM)-labelled dsDNA. All the components were inkjet printed on a piece of parchment paper. The ssDNA region binds to the surface of GO and anchors so that the fluorescence of FAM is quenched. The parchment paper strip is then incubated with a sample containing EcoRV which causes enzymatic hydrolysis, and dsDNA was separated from the GO. As a result, green fluorescence is generated at the reaction spot. Enzyme activity can be measured in the presence and absence of aurintricarboxy acid acting as an EcoRV inhibitor. This method excels by its need for 2-3 orders less reagents compared to the standard well plate assay. Thus, it is an efficient platform for GO-based screening of EcoRV enzyme inhibitors. Graphical abstract A graphene oxide (GO)-based endonuclease EcoRV inhibition FRET assay using inkjet printing was developed. Printing of GO along with assay reagents has a beneficial effect on the enzymatic reaction on paper. This method was successfully applied to evaluate EcoRV inhibitor activity.


Assuntos
DNA/química , Inibidores Enzimáticos/química , Exonucleases/antagonistas & inibidores , Fluoresceína/química , Grafite/química , Sequência de Bases , Bioensaio/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Impressão Tridimensional , Espectrometria de Fluorescência/métodos
16.
Sci Rep ; 9(1): 3487, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837563

RESUMO

Schwann cells (SCs) constitute a crucial element of the peripheral nervous system, by structurally supporting the formation of myelin and conveying vital trophic factors to the nervous system. However, the functions of SCs in developmental and regenerative stages remain unclear. Here, we investigated how optogenetic stimulation (OS) of SCs regulates their development. In SC monoculture, OS substantially enhanced SC proliferation and the number of BrdU+-S100ß+-SCs over time. In addition, OS also markedly promoted the expression of both Krox20 and myelin basic protein (MBP) in SC culture medium containing dBcAMP/NRG1, which induced differentiation. We found that the effects of OS are dependent on the intracellular Ca2+ level. OS induces elevated intracellular Ca2+ levels through the T-type voltage-gated calcium channel (VGCC) and mobilization of Ca2+ from both inositol 1,4,5-trisphosphate (IP3)-sensitive stores and caffeine/ryanodine-sensitive stores. Furthermore, we confirmed that OS significantly increased expression levels of both Krox20 and MBP in SC-motor neuron (MN) coculture, which was notably prevented by pharmacological intervention with Ca2+. Taken together, our results demonstrate that OS of SCs increases the intracellular Ca2+ level and can regulate proliferation, differentiation, and myelination, suggesting that OS of SCs may offer a new approach to the treatment of neurodegenerative disorders.


Assuntos
Diferenciação Celular , Proliferação de Células , Luz , Proteína Básica da Mielina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura/química , Meios de Cultura/farmacologia , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Inositol 1,4,5-Trifosfato/farmacologia , Camundongos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Optogenética , Células de Schwann/citologia , Células de Schwann/metabolismo
17.
Mol Cells ; 42(1): 96, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30622232

RESUMO

[This corrects the article on p. 439 in vol. 39.].

18.
J Liposome Res ; 29(1): 44-52, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29262741

RESUMO

Resistance to chemotherapy is a key factor in the inefficacy of various forms of treatments for cancer. In the present study, chemo-resistant proteins, including glucose-regulated protein 78 (GRP78)/clusterin (CLU) targeted 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes, were developed as a delivery system for co-delivery of camptothecin (CPT) and GRP78 siRNA/CLU siRNA. Their drug/gene co-deliveries were quantitatively assessed in cancer stem cells (CSC) and MCF-7 cells. DOTAP-CPT/siRNA were prepared via electrostatic interaction on GRP78 siRNA or CLU siRNA. The size and ζ-potential of liposomes and lipoplexes were measured by dynamic light scattering techniques and electrophoretic light scattering spectrophotometry. The lipoplexes formation was tested by using gel electrophoresis. Immunofluorescence analysis showed that the expression level of CLU and GRP78 were significantly elevated in CSC compared to MCF-7 cells. Transfection and drug-delivery efficiency of DOTAP-CPT/siRNA were quantitatively compared with Lipofectamine 2000. Compared to free CPT, DOTAP-CPT-siCLU delivery in CSC and MCF-7 cells increased transfection efficiency and chemo-sensitivity by 4.1- and 5.9-fold, respectively. On the other hand, DOTAP-CPT-siGRP78 delivery increased transfection efficiency and chemo sensitivity by 4.4- and 6.2-fold in CSC and MCF-7 cells, respectively, compared to free CPT. It is significant that 3 ± 1.2-fold increase in transfection efficiency was achieved by lipofectamine. Consequently, an increase in anti-cancer/gene silencing efficacy was quantitatively observed as an effect of DOTAP-CPT/siRNA treatment, which was relatively higher than lipofectamine treatment. Conclusively, our experimental data quantitatively demonstrate that using DOTAP-CPT-siRNA specifically targeting (CSCs) chemo-resistant protein in vitro offers substantial potential for synergistic anti-cancer therapy.


Assuntos
Antineoplásicos Fitogênicos , Camptotecina , Clusterina/antagonistas & inibidores , Lipossomos , Células-Tronco Neoplásicas , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camptotecina/administração & dosagem , Clusterina/genética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Chaperona BiP do Retículo Endoplasmático , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Técnicas de Transferência de Genes , Humanos , Lipossomos/química , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem
19.
Biofabrication ; 11(1): 015008, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30421727

RESUMO

Auto neuronal synapses, or autapses, are aberrant structures where the synaptic contact of a neuron forms onto its own branch. The functions of autapses, however, remain unknown. Here, we introduce a simple patterning method for capturing a single-cell, in which we maintained the isolated cell until it reached maturity, and developed arrays of autapses for electrophysiological analysis using multi-electrode arrays (MEA). The pattern arrays were formed by selective patterning of poly-L-lysine and various cell repellent materials. We tested the efficiency of single neuron pattern formed according to materials and pattern dimensions. Autapse formation was verified by immunostaining synaptic markers and physiological measurements via recordings from MEA. The results demonstrated that our multiscale patterning method increased the number of autapses consisting of a single neuron, which matured to connect onto themselves. The proposed patterning method (4.06 ± 0.33 isolated single-cells mm-2) is at least twelve times more efficient and productive than the spray method (0.31 ± 0.10 isolated single-cells mm-2). The spontaneous activity of a single neuron on the patterned MEA occured after 11 d in vitro. The single neuron activity consisted of bursts followed by spike trains (the burst rate was 2.56 min-1). This indicates that our method could be used for electrophysiological analysis, including MEA.


Assuntos
Eletrofisiologia/métodos , Neurônios/química , Sinapses/química , Animais , Linhagem Celular , Células Cultivadas , Eletrofisiologia/instrumentação , Microeletrodos , Neurônios/fisiologia , Polilisina/química , Ratos , Sinapses/fisiologia
20.
Sci Rep ; 8(1): 11413, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061704

RESUMO

MicroRNAs (miRNAs) are important regulatory RNAs that control gene expression in various biological processes. Therefore, control over the disease-related miRNA expression is important both for basic research and for a new class of therapeutic modality to treat serious diseases such as cancer. Here, we present a high-throughput screening strategy to identify small molecules that modulate miRNA expression in living cells. The screen enables simultaneous monitoring of the phenotypic cellular changes associated with the miRNA expression by measuring quantitative fluorescent signals corresponding to target miRNA level in living cells based on a novel biosensor composed of peptide nucleic acid and nano-sized graphene oxide. In this study, the biosensor based cellular screening of 967 compounds (including FDA-approved drugs, enzyme inhibitors, agonists, and antagonists) in cells identified four different classes of small molecules consisting of (i) 70 compounds that suppress both miRNA-21 (miR-21) expression and cell proliferation, (ii) 65 compounds that enhance miR-21 expression and reduce cell proliferation, (iii) 2 compounds that suppress miR-21 expression and increase cell proliferation, and (iv) 21 compounds that enhance both miR-21 expression and cell proliferation. We further investigated the hit compounds to correlate cell morphology changes and cell migration ability with decreased expression of miR-21.


Assuntos
Técnicas Biossensoriais/métodos , Grafite/química , Ensaios de Triagem em Larga Escala/métodos , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...