Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(28): 6316-6324, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432843

RESUMO

Supported lipid bilayers (SLBs) are commonly used to investigate interactions between cell membranes and their environment. These model platforms can be formed on electrode surfaces and analyzed using electrochemical methods for bioapplications. Carbon nanotube porins (CNTPs) integrated with SLBs have emerged as promising artificial ion channel platforms. In this study, we present the integration and ion transport characterization of CNTPs in in vivo environments. We combine experimental and simulation data obtained from electrochemical analysis to analyze the membrane resistance of the equivalent circuits. Our results show that carrying CNTPs on a gold electrode results in high conductance for monovalent cations (K+ and Na+) and low conductance for divalent cations (Ca2+).


Assuntos
Bicamadas Lipídicas , Nanotubos de Carbono , Bicamadas Lipídicas/química , Nanotubos de Carbono/química , Membrana Celular/química , Canais Iônicos , Porinas/química , Transporte de Íons
2.
Membranes (Basel) ; 12(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35207088

RESUMO

There is a general drive to adopt highly porous and less tortuous supports for forward osmosis (FO) membranes to reduce internal concentration polarization (ICP), which regulates the osmotic water permeation. As an abundant waste material, eggshell membrane (ESM) has a highly porous and fibrous structure that meets the requirements for FO membrane substrates. In this study, a polyamide-based biocomposite FO membrane was fabricated by exploiting ESM as a membrane support. The polyamide layer was deposited by the interfacial polymerization technique and the composite membrane exhibited osmotically driven water flux. Further, biocomposite FO membranes were developed by surface coating with GO for stable formation of the polyamide layer. Finally, the osmotic water flux of the eggshell composite membrane with a low structural parameter (~138 µm) reached 46.19 L m-2 h-1 in FO mode using 2 M NaCl draw solution.

3.
Sci Rep ; 9(1): 5779, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962494

RESUMO

Zeolitic imidazolate framework-302 (ZIF-302)-embedded cellulose acetate (CA) membranes for osmotic driven membrane process (ODMPs) were fabricated using the phase inversion method. We investigated the effects of different fractions of ZIF-302 in the CA membrane to understand their influence on ODMPs performance. Osmotic water transport was evaluated using different draw solution concentrations to investigate the effects of ZIF-302 contents on the performance parameters. CA/ZIF-302 membranes showed fouling resistance to sodium alginate by a decreased water flux decline and increased recovery ratio in the pressure retarded osmosis (PRO) mode. Results show that the hydrothermally stable ZIF-302-embedded CA/ZIF-302 composite membrane is expected to be durable in water and alginate-fouling conditions.

4.
ACS Appl Bio Mater ; 2(10): 4242-4248, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021439

RESUMO

The eggshell membrane (ESM) is usually regarded as an agricultural byproduct waste, even though it has unique properties as a biomaterial. In particular, the ESM has a flexible and highly pure microfibrous network structure that can be used as an artificial extracellular matrix (ECM) platform for engraftment or as a tissue-engineered scaffold. In this study, flexible and functional scaffolds were constructed using an ESM and graphene, and their applicability for stem cell and tissue engineering was analyzed. The graphene-layered ESM (GEM) scaffolds show enhanced characteristics, such as ECM-like hierarchical micro- and nanostructures and better mechanical and hydrophilic properties than those of a raw ESM. The GEM scaffolds can control the adhesion properties of stem cells, enhancing the proliferation and osteogenic properties of the cells compared with the effects of a raw ESM. Additionally, the GEM scaffolds can improve the secretion of growth factors from stem cells, possibly through enhanced cell-substrate interactions, thereby promoting the proliferation and differentiation of these cells.

5.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949908

RESUMO

Carbon nanotubes are frequently selected for supercapacitors because of their major intrinsic properties of mechanical and chemical stability, in addition to their excellent electrical conductivity. However, electrodes using carbon nanotubes suffer from severe performance degradation by the phenomenon of re-stacking during fabrication, which hinders ion accessibility. In this study, short single-wall carbon nanotubes were further shortened by sonication-induced cutting to increase the proportion of edge sites. This longitudinally short structure preferentially exposes the active edge sites, leading to high capacitance during operation. Supercapacitors assembled using the shorter-cut nanotubes exhibit a 7-fold higher capacitance than those with pristine single-wall nanotubes while preserving other intrinsic properties of carbon nanotubes, including excellent cycle performance and rate capability. The unique structure suggests a design approach for achieving a high specific capacitance with those low-dimensional carbon materials that suffer from re-stacking during device fabrication.

6.
Nanotechnology ; 29(11): 115702, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29332844

RESUMO

Carbon nanotubes (CNTs) have been considered a prominent nano-channel in cell membranes because of their prominent ion-conductance and ion-selectivity, offering agents for a biomimetic channel platform. Using a coarse-grained molecular dynamics simulation, we clarify a construction mechanism of vertical CNT nano-channels in a lipid membrane for a long period, which has been difficult to observe in previous CNT-lipid interaction simulations. The result shows that both the lipid coating density and length of CNT affect the suitable fabrication condition for a vertical and stable CNT channel. Also, simulation elucidated that a lipid coating on the surface of the CNT prevents the CNT from burrowing into the lipid membrane and the vertical channel is stabilized by the repulsion force between the lipids in the coating and membrane. Our study provides an essential understanding of how CNTs can form stable and vertical channels in the membrane, which is important for designing new types of artificial channels as biosensors for bio-fluidic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...