Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(23): e2207511, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36916693

RESUMO

The authors report a strategic approach to achieve metallic properties from semiconducting CuFeS colloidal nanocrystal (NC) solids through cation exchange method. An unprecedentedly high electrical conductivity is realized by the efficient generation of charge carriers onto a semiconducting CuS NC template via minimal Fe exchange. An electrical conductivity exceeding 10 500 S cm-1 (13 400 S cm-1 at 2 K) and a sheet resistance of 17 Ω/sq at room temperature, which are among the highest values for solution-processable semiconducting NCs, are achieved successfully from bornite-phase CuFeS NC films possessing 10% Fe atom. The temperature dependence of the corresponding films exhibits pure metallic characteristics. Highly conducting NCs are demonstrated for a thermoelectric layer exhibiting a high power factor over 1.2 mW m-1 K-2 at room temperature, electrical wires for switching on light emitting diods (LEDs), and source-drain electrodes for p- and n-type organic field-effect transistors. Ambient stability, eco-friendly composition, and solution-processability further validate their sustainable and practical applicability. The present study provides a simple but very effective method for significantly increasing charge carrier concentrations in semiconducting colloidal NCs to achieve metallic properties, which is applicable to various optoelectronic devices.

2.
Adv Mater ; 34(20): e2200122, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288987

RESUMO

The pursuit of a universal device that combines nonvolatile multilevel storage, ultrafast writing/erasing speed, nondestructive readout, and embedded processing with low power consumption demands the development of innovative architectures. Although thin-film transistors and redox-based resistive-switching devices have independently been proven to be ideal building blocks for data processing and storage, it is still difficult to achieve both well-controlled multilevel memory and high-precision ultrafast processing in a single unit, even though this is essential for the large-scale hardware implementation of in-memory computing. In this work, an ultrafast (≈42 ns) and programable redox thin-film transistor (ReTFT) memory made of a proximity-oxidation-grown TiO2 layer is developed, which has on/off ratio of 105 , nonvolatile multilevel analog storage with a long retention time, strong durability, and high reliability. Utilizing the proof-of-concept ReTFTs, circuits capable of performing fundamental NOT, AND, and OR operations with reconfigurable logic-in-memory processing are developed. Further, on-demand signal memory-processing operations, like multi-terminal addressable memory, learning, pattern recognition, and classification, are explored for prospective application in neuromorphic hardware. This device, which operates on a fundamentally different mechanism, presents an alternate solution to the problems associated with the creation of high-performing in-memory processing technology.

3.
Small ; 18(8): e2105585, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34889027

RESUMO

Emerging nonvolatile resistive switching, also known as the memristor, works with a distinct concept that relies mainly on the change in the composition of the active materials, rather than to store the charge. Particularly for oxide-based memristors, the switching is often governed by the random and unpredicted temporal/spatial migration of oxygen defects, resulting in possessing limitations in terms of control over conduction channel formation and inability to regulate hysteresis loop opening. Therefore, site specific dynamic control of defect concentration in the active materials can offer a unique opportunity to realize on-demand regulation of memory storage and artificial intelligence capabilities. Here, high-performance, site-specific spatially scalable memristor devices are fabricated by stabilizing the conduction channel via manipulation of oxygen defects using electron-beam irradiation. Specifically, the memristors exhibit highly stable and electron-beam dose-regulated multilevel analog hysteresis loop opening with adjustable switching ratios even higher than 104 . Additionally, broad modulation of neural activities, including short- and long-term plasticity, paired-pulse facilitation, spike-timing-dependent plasticity, and dynamic multipattern memory processing, are demonstrated. The work opens a new possibility to regulate the resistive switching behavior and control mimicking of neural activities, providing a hitherto unseen tunability in two-terminal oxide-based memristors.


Assuntos
Inteligência Artificial , Sinapses , Elétrons , Redes Neurais de Computação
4.
J Nanosci Nanotechnol ; 11(1): 262-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446437

RESUMO

The controlled growth of bent and horizontally aligned single-walled carbon nanotubes (SWNTs) is demonstrated in this study. The bent SWNTs growth is attributed to the interaction between van der Waals force with substrate and aerodynamic force from gas flow. The curvature of bent SWNTs can be tailored by adjusting the angle between gas flow and step-edge direction. Electrical characterization shows that the one-dimensional resistivity of bent SWNTs is correlated with the curvature, which is due to strain induced energy bandgap variation. Additionally, a downshift of 10 cm(-1) in G-band is found at curved part by Raman analysis, which may be resulted from the bending induced carbon-carbon bond variation. In addition, horizontally aligned SWNTs and crossbar SWNTs were demonstrated. To prove the possibility of integrating the SWNTs having controllable morphology in carbon nanotube based electronics, an inverter with a gain of 2 was built on an individual horizontally aligned carbon nanotube.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...