Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Metab ; 84: 101941, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636794

RESUMO

OBJECTIVE: Low-density lipoprotein receptor-related protein-1 (LRP1) regulates energy homeostasis, blood-brain barrier integrity, and metabolic signaling in the brain. Deficiency of LRP1 in inhibitory gamma-aminobutyric acid (GABA)ergic neurons causes severe obesity in mice. However, the impact of LRP1 in inhibitory neurons on memory function and cognition in the context of obesity is poorly understood. METHODS: Mice lacking LRP1 in GABAergic neurons (Vgat-Cre; LRP1loxP/loxP) underwent behavioral tests for locomotor activity and motor coordination, short/long-term and spatial memory, and fear learning/memory. This study evaluated the relationships between behavior and metabolic risk factors and followed the mice at 16 and 32 weeks of age. RESULTS: Deletion of LRP1 in GABAergic neurons caused a significant impairment in memory function in 32-week-old mice. In the spatial Y-maze test, Vgat-Cre; LRP1loxP/loxP mice exhibited decreased travel distance and duration in the novel arm compared with controls (LRP1loxP/loxP mice). In addition, GABAergic neuron-specific LRP1-deficient mice showed a diminished capacity for performing learning and memory tasks during the water T-maze test. Moreover, reduced freezing time was observed in these mice during the contextual and cued fear conditioning tests. These effects were accompanied by increased neuronal necrosis and satellitosis in the hippocampus. Importantly, the distance and duration in the novel arm, as well as the performance of the reversal water T-maze test, negatively correlated with metabolic risk parameters, including body weight, serum leptin, insulin, and apolipoprotein J. However, in 16-week-old Vgat-Cre; LRP1loxP/loxP mice, there were no differences in the behavioral tests or correlations between metabolic parameters and cognition. CONCLUSIONS: Our findings demonstrate that LRP1 from GABAergic neurons is important in regulating normal learning and memory. Metabolically, obesity caused by GABAergic LRP1 deletion negatively regulates memory and cognitive function in an age-dependent manner. Thus, LRP1 in GABAergic neurons may play a crucial role in maintaining normal excitatory/inhibitory balance, impacting memory function, and reinforcing the potential importance of LRP1 in neural system integrity.

2.
Front Cell Neurosci ; 17: 1229213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908374

RESUMO

Introduction: Heterozygous mutations in GBA1, which encodes the lysosomal hydrolase glucocerebrosidase (GCase), are a common risk factor for the neurodegenerative movement disorder Parkinson's disease (PD). Consequently, therapeutic options targeting the GCase enzyme are in development. An important aspect of this development is determining the effect of potential modifying compounds on GCase activity, which can be complicated by the different methods and substrate probes that are commonly employed for this purpose. Methods: In this study, we employed the GCase substrate probe 5-(pentafluorobenzoylamino)fluorescein di-D-glucopyranoside (PFB-FDGlu) in combination with live cell imaging to measure GCase activity in situ in the lysosome. Results: The live cell assay was validated using the GCase inhibitor conduritol-B-epoxide and with GBA1 knockout neural cells and was then used to assess GCase activity in iPSC differentiated into neural stem cells and neurons that were obtained from idiopathic PD patients and PD patients with the LRRK2 G2019S and GBA N370S mutations, as well as controls (n = 4 per group). Heterogeneity in GCase activity was observed across all groups. However, a significant inverse correlation between GCase activity and levels of alpha-synuclein protein was observed. Discussion: The live cell imaging assay for GCase activity could be useful for further understanding the role of GCase in PD and screening potential modifying compounds in differentiated human cell models.

3.
Brain Pathol ; 33(5): e13196, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485772

RESUMO

Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB) are neurodegenerative disorders with alpha-synuclein (α-syn) aggregation pathology. Different strains of α-syn with unique properties are suggested to cause distinct clinical and pathological manifestations resulting in PD, MSA, or DLB. To study individual α-syn spreading patterns, we injected α-syn fibrils amplified from brain homogenates of two MSA patients and two PD patients into the brains of C57BI6/J mice. Antibody staining against pS129-α-syn showed that α-syn fibrils amplified from the brain homogenates of the four different patients caused different levels of α-syn spreading. The strongest α-syn pathology was triggered by α-syn fibrils of one of the two MSA patients, followed by comparable pS129-α-syn induction by the second MSA and one PD patient material. Histological analysis using an antibody against Iba1 further showed that the formation of pS129-α-syn is associated with increased microglia activation. In contrast, no differences in dopaminergic neuron numbers or co-localization of α-syn in oligodendrocytes were observed between the different groups. Our data support the spreading of α-syn pathology in MSA, while at the same time pointing to spreading heterogeneity between different patients potentially driven by individual patient immanent factors.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , alfa-Sinucleína/metabolismo , Anticorpos , Encéfalo/patologia , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Sinucleinopatias/patologia
4.
Sci Rep ; 13(1): 5217, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997567

RESUMO

Objective biomarkers for Parkinson's Disease (PD) could aid early and specific diagnosis, effective monitoring of disease progression, and improved design and interpretation of clinical trials. Although alpha-synuclein remains a biomarker candidate of interest, the multifactorial and heterogenous nature of PD highlights the need for a PD biomarker panel. Ideal biomarker candidates include markers that are detectable in easily accessible samples, (ideally blood) and that reflect the underlying pathological process of PD. In the present study, we explored the diagnostic and prognostic PD biomarker potential of the SIMOA neurology 4-plex-A biomarker panel, which included neurofilament light (NFL), glial fibrillary acid protein (GFAP), tau and ubiquitin C-terminal hydrolase L1 (UCHL-1). We initially performed a serum vs plasma comparative study to determine the most suitable blood-based matrix for the measurement of these proteins in a multiplexed assay. The levels of NFL and GFAP in plasma and serum were highly correlated (Spearman rho-0.923, p < 0.0001 and rho = 0.825, p < 0.001 respectively). In contrast, the levels of tau were significantly higher in plasma compared to serum samples (p < 0.0001) with no correlation between sample type (Spearman p > 0.05). The neurology 4-plex-A panel, along with plasma alpha-synuclein was then assessed in a cross-sectional cohort of 29 PD patients and 30 controls. Plasma NFL levels positively correlated with both GFAP and alpha-synuclein levels (rho = 0.721, p < 0.0001 and rho = 0.390, p < 0.05 respectively). As diagnostic biomarkers, the control and PD groups did not differ in their mean NFL, GFAP, tau or UCHL-1 plasma levels (t test p > 0.05). As disease state biomarkers, motor severity (MDS-UPDRS III) correlated with increased NFL (rho = 0.646, p < 0.0001), GFAP (rho = 0.450, p < 0.05) and alpha-synuclein levels (rho = 0.406, p < 0.05), while motor stage (Hoehn and Yahr) correlated with increased NFL (rho = 0.455, p < 0.05) and GFAP (rho = 0.549, p < 0.01) but not alpha-synuclein levels (p > 0.05). In conclusion, plasma was determined to be most suitable blood-based matrix for multiplexing the neurology 4-plex-A panel. Given their correlation with motor features of PD, NFL and GFAP appear to be promising disease state biomarker candidates and further longitudinal validation of these two proteins as blood-based biomarkers for PD progression is warranted.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Proteína Glial Fibrilar Ácida , Ubiquitina Tiolesterase , Estudos Transversais , Biomarcadores
6.
Biomolecules ; 12(11)2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36358947

RESUMO

Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Fosforilação , Mutação , Esfingolipídeos , Fosfolipídeos , Esteróis
7.
Acta Neuropathol ; 144(5): 861-879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053316

RESUMO

Parkinson's disease (PD) is a movement disorder characterized by the early loss of nigrostriatal dopaminergic pathways producing significant network changes impacting motor coordination. Recently three motor stages of PD have been proposed (a silent period when nigrostriatal loss begins, a prodromal motor period with subtle focal manifestations, and clinical PD) with evidence that motor cortex abnormalities occur to produce clinical PD[8]. We directly assess structural changes in the primary motor cortex and corticospinal tract using parallel analyses of longitudinal clinical and cross-sectional pathological cohorts thought to represent different stages of PD. 18F-FP-CIT positron emission tomography and subtle motor features identified patients with idiopathic rapid-eye-movement sleep behaviour disorder (n = 8) that developed prodromal motor signs of PD. Longitudinal diffusion tensor imaging before and after the development of prodromal motor PD showed higher fractional anisotropy in motor cortex and corticospinal tract compared to controls, indicating adaptive structural changes in motor networks in concert with nigrostriatal dopamine loss. Histological analyses of the white matter underlying the motor cortex showed progressive disorientation of axons with segmental replacement of neurofilaments with α-synuclein, enlargement of myelinating oligodendrocytes and increased density of their precursors. There was no loss of neurons in the motor cortex in early or late pathologically confirmed motor PD compared to controls, although there were early cortical increases in neuronal neurofilament light chain and myelin proteins in association with α-synuclein accumulation. Our results collectively provide evidence of a direct impact of PD on primary motor cortex and its output pathways that begins in the prodromal motor stage of PD with structural changes confirmed in early PD. These adaptive structural changes become considerable as the disease advances potentially contributing to motor PD.


Assuntos
Córtex Motor , Doença de Parkinson , Substância Branca , Estudos Transversais , Imagem de Tensor de Difusão , Dopamina , Humanos , Córtex Motor/metabolismo , Doença de Parkinson/patologia , Sintomas Prodrômicos , Substância Branca/patologia , alfa-Sinucleína/metabolismo
8.
Commun Biol ; 5(1): 1040, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180728

RESUMO

Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases that are neuropathologically characterized by α-synuclein inclusions. Increasing evidence supports the aggregation of α-synuclein in specific brain areas early in the disease course, followed by the spreading of α-synuclein pathology to multiple brain regions. However, little is known about how the structure of α-synuclein fibrils influence its ability to seed endogenous α-synuclein in recipient cells. Here, we aggregated α-synuclein by seeding with homogenates of PD- and MSA-confirmed brain tissue, determined the resulting α-synuclein fibril structures by cryo-electron microscopy, and characterized their seeding potential in mouse primary oligodendroglial cultures. The combined analysis shows that the two patient material-amplified α-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface and their ability to recruit endogenous α-synuclein. Our study indicates that the quaternary structure of α-synuclein fibrils modulates the seeding of α-synuclein pathology inside recipient cells. It thus provides an important advance in the quest to understand the connection between the structure of α-synuclein fibrils, cellular seeding/spreading, and ultimately the clinical manifestations of different synucleinopathies.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína/metabolismo , Animais , Microscopia Crioeletrônica , Camundongos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/química
9.
J Biol Chem ; 298(8): 102260, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841928

RESUMO

The propagation and accumulation of pathological α-synuclein protein is thought to underlie the clinical symptoms of the neurodegenerative movement disorder Parkinson's disease (PD). Consequently, there is significant interest in identifying the mechanisms that contribute to α-synuclein pathology, as these may inform therapeutic targets for the treatment of PD. One protein that appears to contribute to α-synuclein pathology is the innate immune pathogen recognition receptor, toll-like receptor 2 (TLR2). TLR2 is expressed on neurons, and its activation results in the accumulation of α-synuclein protein; however, the precise mechanism by which TLR2 contributes to α-synuclein pathology is unclear. Herein we demonstrate using human cell models that neuronal TLR2 activation acutely impairs the autophagy lysosomal pathway and markedly potentiates α-synuclein pathology seeded with α-synuclein preformed fibrils. Moreover, α-synuclein pathology could be ameliorated with a novel small molecule TLR2 inhibitor, including in induced pluripotent stem cell-derived neurons from a patient with PD. These results provide further insight into how TLR2 activation may promote α-synuclein pathology in PD and support that TLR2 may be a potential therapeutic target for the treatment of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
10.
Brain ; 145(10): 3472-3487, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35551349

RESUMO

Many genetic risk factors for Parkinson's disease have lipid-related functions and lipid-modulating drugs such as statins may be protective against Parkinson's disease. Moreover, the hallmark Parkinson's disease pathological protein, α-synuclein, has lipid membrane function and pathways dysregulated in Parkinson's disease such as the endosome-lysosome system and synaptic signalling rely heavily on lipid dynamics. Despite the potential role for lipids in Parkinson's disease, most research to date has been protein-centric, with large-scale, untargeted serum and CSF lipidomic comparisons between genetic and idiopathic Parkinson's disease and neurotypical controls limited. In particular, the extent to which lipid dysregulation occurs in mutation carriers of one of the most common Parkinson's disease risk genes, LRRK2, is unclear. Further, the functional lipid pathways potentially dysregulated in idiopathic and LRRK2 mutation Parkinson's disease are underexplored. To better determine the extent of lipid dysregulation in Parkinson's disease, untargeted high-performance liquid chromatography-tandem mass spectrometry was performed on serum (n = 221) and CSF (n = 88) obtained from a multi-ethnic population from the Michael J. Fox Foundation LRRK2 Clinical Cohort Consortium. The cohort consisted of controls, asymptomatic LRRK2 G2019S carriers, LRRK2 G2019S carriers with Parkinson's disease and Parkinson's disease patients without a LRRK2 mutation. Age and sex were adjusted for in analyses where appropriate. Approximately 1000 serum lipid species per participant were analysed. The main serum lipids that distinguished both Parkinson's disease patients and LRRK2 mutation carriers from controls included species of ceramide, triacylglycerol, sphingomyelin, acylcarnitine, phosphatidylcholine and lysophosphatidylethanolamine. Significant alterations in sphingolipids and glycerolipids were also reflected in Parkinson's disease and LRRK2 mutation carrier CSF, although no correlations were observed between lipids identified in both serum and CSF. Pathway analysis of altered lipid species indicated that sphingolipid metabolism, insulin signalling and mitochondrial function were the major metabolic pathways dysregulated in Parkinson's disease. Importantly, these pathways were also found to be dysregulated in serum samples from a second Parkinson's disease cohort (n = 315). Results from this study demonstrate that dysregulated lipids in Parkinson's disease generally, and in LRRK2 mutation carriers, are from functionally and metabolically related pathways. These findings provide new insight into the extent of lipid dysfunction in Parkinson's disease and therapeutics manipulating these pathways may be beneficial for Parkinson's disease patients. Moreover, serum lipid profiles may be novel biomarkers for both genetic and idiopathic Parkinson's disease.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Insulinas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Esfingomielinas , Biomarcadores , Ceramidas , Fosfatidilcolinas , Triglicerídeos
11.
J Neuroinflammation ; 18(1): 177, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399786

RESUMO

BACKGROUND: Synucleinopathies are characterized by neurodegeneration and deposition of the presynaptic protein α-synuclein in pathological protein inclusions. Growing evidence suggests the complement system not only has physiological functions in the central nervous system, but also is involved in mediating the pathological loss of synapses in Alzheimer's disease. However, it is not established whether the complement system has a similar role in the diseases Parkinson's disease, Dementia with Lewy bodies, and multiple system atrophy (MSA) that are associated with α-synuclein aggregate pathology. METHODS: To investigate if the complement system has a pathological role in synucleinopathies, we assessed the effect of the complement system on the viability of an α-synuclein expressing cell model and examined direct activation of the complement system by α-synuclein in a plate-based activation assay. Finally, we investigated the levels of the initiator of the classical pathway, C1q, in postmortem brain samples from MSA patients. RESULTS: We demonstrate that α-synuclein activates the classical complement pathway and mediates complement-dependent toxicity in α-synuclein expressing SH-SY5Y cells. The α-synuclein-dependent cellular toxicity was rescued by the complement inhibitors RaCI (inhibiting C5) and Cp20 (inhibiting C3). Furthermore, we observed a trend for higher levels of C1q in the putamen of MSA subjects than that of controls. CONCLUSION: α-Synuclein can activate the classical complement pathway, and the complement system is involved in α-synuclein-dependent cellular cytotoxicity suggesting the system could play a prodegenerative role in synucleinopathies.


Assuntos
Via Clássica do Complemento/fisiologia , Corpos de Inclusão/metabolismo , Córtex Visual/metabolismo , alfa-Sinucleína/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Córtex Visual/patologia
12.
J Parkinsons Dis ; 11(4): 1761-1772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151860

RESUMO

BACKGROUND: The identification of reliable biomarkers in Parkinson's disease (PD) would provide much needed diagnostic accuracy, a means of monitoring progression, objectively measuring treatment response, and potentially allowing patient stratification within clinical trials. Whilst the assessment of total alpha-synuclein in biofluids has been identified as a promising biomarker, conflicting trends in these levels across patient plasma samples relative to controls has limited its use. Different commercially available assay platforms that have been used to measure alpha-synuclein may contribute to different study outcomes. OBJECTIVE: To compare different platform immunoassays for the measurement of total alpha-synuclein using the same plasma samples from 49 PD patients and 47 controls. METHODS: Total plasma alpha-synuclein concentrations were assessed using the BioLegend, MesoScale Discovery, and Quanterix platform in plasma samples from PD patients and matched controls. RESULTS: A significant increase in total plasma alpha-synuclein was observed in PD patients using the Biolegend (10%), Mesoscale Discovery (13%) and Quanterix (39%) assays. The Mesoscale Discovery and Quanterix assays showed the strongest correlations (r = 0.78, p < 0.0001) with each other, whilst the Quanterix platform demonstrated the lowest variation and highest effect size. Inclusion of age, sex and hemoglobin levels as covariates in the analysis of total alpha-synuclein improved the ability of all three immunoassays to detect a significant difference between patients and controls. CONCLUSION: All three immunoassays were sensitive enough to detect group level differences between PD patients and controls, with the largest effect size observed with the Quanterix assay. These results may help inform assay choices in ongoing clinical trials.


Assuntos
Imunoensaio , Doença de Parkinson , alfa-Sinucleína , Biomarcadores/sangue , Humanos , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Sensibilidade e Especificidade , alfa-Sinucleína/sangue
13.
Hum Mol Genet ; 29(14): 2379-2394, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588886

RESUMO

Ageing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD. We exploited putative hypomorphic and EOfAD-like mutations in the zebrafish psen1 gene to explore the effects of age and genotype on brain responses to acute hypoxia. Both mutations accelerate age-dependent changes in hypoxia-sensitive gene expression supporting that ageing is necessary, but insufficient, for AD occurrence. Curiously, the responses to acute hypoxia become inverted in extremely aged fish. This is associated with an apparent inability to upregulate glycolysis. Wild-type PSEN1 allele expression is reduced in post-mortem brains of human EOfAD mutation carriers (and extremely aged fish), possibly contributing to EOfAD pathogenesis. We also observed that age-dependent loss of HIF1 stabilization under hypoxia is a phenomenon conserved across vertebrate classes.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/genética , Encéfalo/metabolismo , Presenilina-1/genética , Proteínas de Peixe-Zebra/genética , Envelhecimento/patologia , Alelos , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Hipóxia Celular/genética , Modelos Animais de Doenças , Genótipo , Humanos , Mutação/genética , Presenilina-2/genética , Peixe-Zebra/genética
14.
Nat Commun ; 10(1): 5535, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797870

RESUMO

Parkinson's disease (PD) and Multiple System Atrophy (MSA) are clinically distinctive diseases that feature a common neuropathological hallmark of aggregated α-synuclein. Little is known about how differences in α-synuclein aggregate structure affect disease phenotype. Here, we amplified α-synuclein aggregates from PD and MSA brain extracts and analyzed the conformational properties using fluorescent probes, NMR spectroscopy and electron paramagnetic resonance. We also generated and analyzed several in vitro α-synuclein polymorphs. We found that brain-derived α-synuclein fibrils were structurally different to all of the in vitro polymorphs analyzed. Importantly, there was a greater structural heterogeneity among α-synuclein fibrils from the PD brain compared to those from the MSA brain, possibly reflecting on the greater variability of disease phenotypes evident in PD. Our findings have significant ramifications for the use of non-brain-derived α-synuclein fibrils in PD and MSA studies, and raise important questions regarding the one disease-one strain hypothesis in the study of α-synucleinopathies.


Assuntos
Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Extratos de Tecidos/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Modelos Moleculares , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Sinucleinopatias/diagnóstico , alfa-Sinucleína/química
15.
Brain ; 142(9): 2845-2859, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31312839

RESUMO

Mutations in lysosomal genes increase the risk of neurodegenerative diseases, as is the case for Parkinson's disease. Here, we found that pathogenic and protective mutations in arylsulfatase A (ARSA), a gene responsible for metachromatic leukodystrophy, a lysosomal storage disorder, are linked to Parkinson's disease. Plasma ARSA protein levels were changed in Parkinson's disease patients. ARSA deficiency caused increases in α-synuclein aggregation and secretion, and increases in α-synuclein propagation in cells and nematodes. Despite being a lysosomal protein, ARSA directly interacts with α-synuclein in the cytosol. The interaction was more extensive with protective ARSA variant and less with pathogenic ARSA variant than wild-type. ARSA inhibited the in vitro fibrillation of α-synuclein in a dose-dependent manner. Ectopic expression of ARSA reversed the α-synuclein phenotypes in both cell and fly models of synucleinopathy, the effects correlating with the extent of the physical interaction between these molecules. Collectively, these results suggest that ARSA is a genetic modifier of Parkinson's disease pathogenesis, acting as a molecular chaperone for α-synuclein.


Assuntos
Cerebrosídeo Sulfatase/fisiologia , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto , Doença de Parkinson/metabolismo , Mutação Puntual , alfa-Sinucleína/metabolismo , Adulto , Idoso , Animais , Animais Geneticamente Modificados , Encéfalo/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Cerebrosídeo Sulfatase/sangue , Cerebrosídeo Sulfatase/genética , Demência/sangue , Demência/etiologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Técnicas de Inativação de Genes , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Doença de Parkinson/psicologia , Linhagem , Agregação Patológica de Proteínas/genética , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo
16.
Ann Clin Transl Neurol ; 6(3): 486-495, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911572

RESUMO

Objective: Physiological changes potentially influence disease progression and survival along the Amyotrophic Lateral Sclerosis (ALS)-Frontotemporal dementia (FTD) spectrum. The peripheral peptides that regulate eating and metabolism may provide diagnostic, metabolic, and progression biomarkers. The current study aimed to examine the relationships and biomarker potential of hormonal peptides. Methods: One hundred and twenty-seven participants (36 ALS, 26 ALS- cognitive, patients with additional cognitive behavioral features, and 35 behavioral variant FTD (bvFTD) and 30 controls) underwent fasting blood analyses of leptin, ghrelin, neuropeptide Y (NPY), peptide YY (PYY), and insulin levels. Relationships between endocrine measures, cognition, eating behaviors, and body mass index (BMI) were investigated. Biomarker potential was evaluated using multinomial logistic regression for diagnosis and correlation to disease duration. Results: Compared to controls, ALS and ALS-cognitive had higher NPY levels and bvFTD had lower NPY levels, while leptin levels were increased in all patient groups. All groups had increased insulin levels and a state of insulin resistance compared to controls. Lower NPY levels correlated with increasing eating behavioral change and BMI, while leptin levels correlated with BMI. On multinomial logistic regression, NPY and leptin levels were found to differentiate between diagnosis. Reduced Neuropeptide Y levels correlated with increasing disease duration, suggesting it may be useful as a potential marker of disease progression. Interpretation: ALS-FTD is characterized by changes in NPY and leptin levels that may impact on the underlying regional neurodegeneration as they were predictive of diagnosis and disease duration, offering the potential as biomarkers and for the development of interventional treatments.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores/sangue , Demência Frontotemporal/sangue , Demência Frontotemporal/diagnóstico , Neuropeptídeos/sangue , Biomarcadores/metabolismo , Progressão da Doença , Jejum , Comportamento Alimentar , Feminino , Grelina/sangue , Grelina/metabolismo , Humanos , Insulina/sangue , Insulina/metabolismo , Leptina/sangue , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Neuropeptídeo Y/sangue , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Peptídeo YY/sangue , Peptídeo YY/metabolismo , Valor Preditivo dos Testes
17.
Brain ; 141(2): 521-534, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253099

RESUMO

See Josephs (doi:10.1093/brain/awx367) for a scientific commentary on this article.In many neurodegenerative disorders, familial forms have provided important insights into the pathogenesis of their corresponding sporadic forms. The first mutations associated with frontotemporal lobar degeneration (FTLD) were found in the microtubule-associated protein tau (MAPT) gene on chromosome 17 in families with frontotemporal degeneration and parkinsonism (FTDP-17). However, it was soon discovered that 50% of these families had a nearby mutation in progranulin. Regardless, the original FTDP-17 nomenclature has been retained for patients with MAPT mutations, with such patients currently classified independently from the different sporadic forms of FTLD with tau-immunoreactive inclusions (FTLD-tau). The separate classification of familial FTLD with MAPT mutations implies that familial forms cannot inform on the pathogenesis of the different sporadic forms of FTLD-tau. To test this assumption, this study pathologically assessed all FTLD-tau cases with a known MAPT mutation held by the Sydney and Cambridge Brain Banks, and compared them to four cases of four subtypes of sporadic FTLD-tau, in addition to published case reports. Ten FTLD-tau cases with a MAPT mutation (K257T, S305S, P301L, IVS10+16, R406W) were screened for the core differentiating neuropathological features used to diagnose the different sporadic FTLD-tau subtypes to determine whether the categorical separation of MAPT mutations from sporadic FTLD-tau is valid. Compared with sporadic cases, FTLD-tau cases with MAPT mutations had similar mean disease duration but were younger at age of symptom onset (55 ± 4 years versus 70 ± 6 years). Interestingly, FTLD-tau cases with MAPT mutations had similar patterns and severity of neuropathological features to sporadic FTLD-tau subtypes and could be classified into: Pick's disease (K257T), corticobasal degeneration (S305S, IVS10‰+‰16, R406W), progressive supranuclear palsy (S305S) or globular glial tauopathy (P301L, IVS10‰+‰16). The finding that the S305S mutation could be classified into two tauopathies suggests additional modifying factors. Assessment of our cases and previous reports suggests that distinct MAPT mutations result in particular FTLD-tau subtypes, supporting the concept that they are likely to inform on the varied cellular mechanisms involved in distinctive forms of sporadic FTLD-tau. As such, FTLD-tau cases with MAPT mutations should be considered familial forms of FTLD-tau subtypes rather than a separate FTDP-17 category, and continued research on the effects of different mutations more focused on modelling their impact to produce the very different sporadic FTLD-tau pathologies in animal and cellular models.


Assuntos
Demência Frontotemporal/complicações , Demência Frontotemporal/genética , Mutação/genética , Tauopatias/complicações , Proteínas tau/genética , Idoso , Estudos de Coortes , Correlação de Dados , Feminino , Demência Frontotemporal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tauopatias/genética
18.
Acta Neuropathol Commun ; 5(1): 76, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078806

RESUMO

The identification of the TAR DNA-binding protein 43 (TDP-43) as the ubiquitinated cytoplasmic inclusions in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) confirmed that these two diseases share similar mechanisms, likely to be linked to the abnormal hyperphosphorylation, ubiquitination and cleavage of pathological TDP-43. Importantly however, a quantitative analysis of TDP-43 inclusions in predilection cortical regions of FTLD, FTLD-ALS and ALS cases has not been undertaken. The present study set out to assess this and demonstrates that distinct TDP-43 inclusion morphologies exist in the anterior cingulate cortex, but not the motor cortex of FTLD and FTLD-ALS. Specifically, in the anterior cingulate cortex of FTLD cases, significant rounded TDP-43 inclusions and rare circumferential TDP-43 inclusions were identified. In contrast, FTLD-ALS cases revealed significant circumferential TDP-43 inclusions and rare rounded TDP-43 inclusions in the anterior cingulate cortex. Distinct TDP-43 inclusion morphologies in the anterior cingulate cortex of FTLD and FTLD-ALS may be linked to heterogeneity in the ubiquitination of pathological TDP-43 inclusions, with the present study providing evidence to suggest the involvement of distinct pathomechanisms in these two overlapping clinical syndromes.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/patologia , Giro do Cíngulo/patologia , Corpos de Inclusão/patologia , Idoso , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Giro do Cíngulo/metabolismo , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Masculino , Córtex Motor/metabolismo , Córtex Motor/patologia
19.
J Alzheimers Dis ; 58(1): 163-170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28387671

RESUMO

BACKGROUND: A proportion of patients with frontotemporal dementia (FTD) also develop amyotrophic lateral sclerosis (ALS). OBJECTIVE: We aimed to establish the risk of developing ALS in patients presenting with FTD and to identify the relevant clinical variables associated with progression from FTD to FTD-ALS. METHODS: Of 218 consecutive patients with FTD, 10.1% had a dual FTD-ALS diagnosis at presentation. The remaining 152 FTD patients with follow-up of at least 12 months were included in the present study. We calculated the rate of progression to FTD-ALS and compared the baseline characteristics of FTD patients who developed ALS to those who did not develop ALS. RESULTS: Five percent of FTD patients developed ALS. The incidence rate of ALS was 6.7/100 patient-years in patients with FTD symptoms since 1 year, which declined with duration of FTD symptoms. No FTD patients developed ALS after 5 years. Five out of 8 FTD patients who developed ALS had presented with a mixed behavioral variant FTD and progressive non-fluent aphasia (bvFTD+PNFA) phenotype, 2 with bvFTD, and 1 with PNFA. Progression to FTD-ALS was significantly more frequent in patients with bvFTD+PNFA compared to those without this phenotype (p < 0.0001, OR 38.3, 95% CI: 7.3 to 199.2), and in FTD patients who carried the C9orf72 repeat expansion compared to those without the repeat expansion (p = 0.02, OR 8.0, 95% CI: 1.7 to 38.6). CONCLUSIONS: FTD patients with a mixed bvFTD+PNFA phenotype and with a C9orf72 repeat expansion should be closely monitored for the possible development of ALS. The risk of developing ALS in FTD appears to decline with the duration of FTD symptoms.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/etiologia , Progressão da Doença , Demência Frontotemporal/complicações , Idade de Início , Idoso , Proteína C9orf72/genética , Estudos de Coortes , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Valor Preditivo dos Testes , Escalas de Graduação Psiquiátrica
20.
Exp Neurobiol ; 25(3): 103-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27358578

RESUMO

The subgranular zone (SGZ) and subventricular zone (SVZ) are developmental remnants of the germinal regions of the brain, hence they retain the ability to generate neuronal progenitor cells in adult life. Neurogenesis in adult brain has an adaptive function because newly produced neurons can integrate into and modify existing neuronal circuits. In contrast to the SGZ and SVZ, other brain regions have a lower capacity to produce new neurons, and this usually occurs via parenchymal and periventricular cell genesis. Compared to neurogenesis, gliogenesis occurs more prevalently in the adult mammalian brain. Under certain circumstances, interaction occurs between neurogenesis and gliogenesis, facilitating glial cells to transform into neuronal lineage. Therefore, modulating the balance between neurogenesis and gliogenesis may present a new perspective for neurorestoration, especially in diseases associated with altered neurogenesis and/or gliogenesis, cell loss, or disturbed homeostasis of cellular constitution. The present review discusses important neuroanatomical features of adult neurogenesis and gliogenesis, aiming to explore how these processes could be modulated toward functional repair of the adult brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...