Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mech Ageing Dev ; 219: 111930, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554950

RESUMO

This study aimed to elucidate the specific biochemical pathways linked to changes in proteins in the Alzheimer's disease (AD) human hippocampus. Our data demonstrate a constant rise in the expression of four proteins (VGF, GFAP, HSPB1, and APP) across all eleven studies. Notably, UBC was the most centrally involved and had increased expression in the hippocampus tissue of individuals with AD. Modified proteins in the hippocampal tissue were found to activate the innate immune system and disrupt communication across chemical synapses. Four hub proteins (CD44, APP, ITGB2, and APOE) are connected to amyloid plaques, whereas two hub proteins (RPL24 and RPS23) are related to neurofibrillary tangles (NFTs). The presence of modified proteins was discovered to trigger the activation of microglia and decrease the functioning of ribosomes and mitochondria in the hippocampus. Three significant microRNAs (hsa-miR-106b-5p, hsa-miR-17-5p, and hsa-miR-16-5p) and transcription factors (MYT1L, PIN1, and CSRNP3) have been discovered to improve our understanding of the alterations in proteins within the hippocampal tissues that lead to the progression of AD. These findings establish a path for possible treatments for AD to employ therapeutic strategies that specifically focus on the proteins or processes linked to the illness.

2.
IJID Reg ; 10: 159-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304759

RESUMO

This report elucidated the first two noteworthy cases of Mpox that manifested as an emerging concern in a densely populated city in Vietnam. Two male patients (22 and 27 years old) were admitted to the hospital due to the presence of small pustules on their faces, accompanied by symptoms of fatigue, drowsiness, and muscle pain. Reverse transcription-polymerase chain reaction confirmed the presence of Mpox. The patients possessed a medical history involving four previous treatments for syphilis, a continuous antiretroviral regimen for over 3 years, no previous history of chickenpox, a lack of vaccination against chickenpox, and engagement in intimate contact with other men. Following a 14-day isolation period coupled with appropriate medical interventions, both patients exhibited stable health conditions, marked by the absence of fever and the desiccation of skin blisters. Subsequently, they were discharged with instructions for ongoing health monitoring. Comprehensive surveillance and monitoring approaches have been implemented for all individuals in close contact with the affected patients, adhering to established guidelines. Notably, no suspected cases have been identified during the current surveillance efforts. The collective findings underscore the significance of robust surveillance, continuous monitoring, and strategic vaccination initiatives, particularly in densely populated urban centers, to effectively manage and mitigate the impact of Mpox outbreaks.

3.
Front Immunol ; 14: 1240946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965349

RESUMO

Despite effective antiretroviral therapy, HIV co-morbidities remain where central nervous system (CNS) neurocognitive disorders and cardiovascular disease (CVD)-pathology that are linked with myeloid activation are most prevalent. Comorbidities such as neurocogntive dysfunction and cardiovascular disease (CVD) remain prevalent among people living with HIV. We sought to investigate if cardiac pathology (inflammation, fibrosis, cardiomyocyte damage) and CNS pathology (encephalitis) develop together during simian immunodeficiency virus (SIV) infection and if their co-development is linked with monocyte/macrophage activation. We used a cohort of SIV-infected rhesus macaques with rapid AIDS and demonstrated that SIV encephalitis (SIVE) and CVD pathology occur together more frequently than SIVE or CVD pathology alone. Their co-development correlated more strongly with activated myeloid cells, increased numbers of CD14+CD16+ monocytes, plasma CD163 and interleukin-18 (IL-18) than did SIVE or CVD pathology alone, or no pathology. Animals with both SIVE and CVD pathology had greater numbers of cardiac macrophages and increased collagen and monocyte/macrophage accumulation, which were better correlates of CVD-pathology than SIV-RNA. Animals with SIVE alone had higher levels of activated macrophage biomarkers and cardiac macrophage accumulation than SIVnoE animals. These observations were confirmed in HIV infected individuals with HIV encephalitis (HIVE) that had greater numbers of cardiac macrophages and fibrosis than HIV-infected controls without HIVE. These results underscore the notion that CNS and CVD pathologies frequently occur together in HIV and SIV infection, and demonstrate an unmet need for adjunctive therapies targeting macrophages.


Assuntos
Complexo AIDS Demência , Síndrome da Imunodeficiência Adquirida , Doenças Cardiovasculares , Encefalite , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Fibrose
4.
Microorganisms ; 11(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513022

RESUMO

The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.

5.
Brain Behav ; 13(8): e3126, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366075

RESUMO

BACKGROUND: C-C chemokine receptor 5 (CCR5) is a major coreceptor for Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) cell entry; however, its role in brain pathogenesis is largely understudied. Thus, we sought to examine cell type-specific protein expression of CCR5 during SIV infection of the brain. METHODS: We examined occipital cortical tissue from uninfected rhesus macaques and SIV-infected animals with or without encephalitis using immunohistochemistry and immunofluorescence microscopy to determine the number and distribution of CCR5-positive cells. RESULTS: An increase in the number of CCR5+ cells in the brain of SIV-infected animals with encephalitis was accounted for by increased CD3+CD8+ cells expressing CCR5, but not by increased CCR5+ microglia or perivascular macrophages (PVMs), and a concurrent decrease in the percentage of CCR5+ PVMs was observed. Levels of CCR5 and SIV Gag p28 protein expression were examined on a per-cell basis, and a significant, negative relationship was established indicating decreased CCR5 expression in productively infected cells. While investigating the endocytosis-mediated CCR5 internalization as a mechanism for CCR5 downregulation, we found that phospho-ERK1/2, an indicator of clathrin-mediated endocytosis, was colocalized with infected PVMs and that macrophages from infected animals showed significantly increased expression of clathrin heavy chain 1. CONCLUSIONS: These findings show a shift in CCR5-positive cell types in the brain during SIV pathogenesis with an increase in the number of CCR5+ CD8 T cells, and downregulated CCR5 expression on infected PVMs, likely through ERK1/2-driven, clathrin-mediated endocytosis.


Assuntos
Encefalite , Receptores CCR5 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Encéfalo/patologia , Clatrina/metabolismo , Regulação para Baixo , Encefalite/metabolismo , Macaca mulatta/metabolismo , Macrófagos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de Quimiocinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/metabolismo
6.
J Neuroinflammation ; 20(1): 128, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244986

RESUMO

Increasing evidence has connected the development of certain neuropsychiatric disorders, as well as neurodegenerative diseases, to stress-induced dysregulation of the immune system. We have shown that escapable (ES) and inescapable (IS) footshock stress, and memories associated with ES or IS, can differentially alter inflammatory-related gene expression in brain in a region dependent manner. We have also demonstrated that the basolateral amygdala (BLA) regulates stress- and fear memory-induced alterations in sleep, and that differential sleep and immune responses in the brain to ES and IS appear to be integrated during fear conditioning and then reproduced by fear memory recall. In this study, we investigated the role of BLA in influencing regional inflammatory responses within the hippocampus (HPC) and medial prefrontal cortex (mPFC) by optogenetically stimulating or inhibiting BLA in male C57BL/6 mice during footshock stress in our yoked shuttlebox paradigm based on ES and IS. Then, mice were immediately euthanized and RNA extracted from brain regions of interest and loaded into NanoString® Mouse Neuroinflammation Panels for compilation of gene expression profiles. Results showed differential regional effects in gene expression and activated pathways involved in inflammatory-related signaling following ES and IS, and these differences were altered depending on amygdalar excitation or inhibition. These findings demonstrate that the stress-induced immune response, or "parainflammation", is affected by stressor controllability and that BLA influences regional parainflammation to ES or IS in HPC and mPFC. The study illustrates how stress-induced parainflammation can be regulated at the neurocircuit level and suggests that this approach can be useful for uncovering circuit and immune interactions in mediating differential stress outcomes.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Masculino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Pré-Frontal/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo , Tonsila do Cerebelo
7.
Respir Res ; 23(1): 326, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463179

RESUMO

BACKGROUND: Bacterial pneumonia is a major risk factor for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Pseudomonas aeruginosa (PA), an opportunistic pathogen with an increasing resistance acquired against multiple drugs, is one of the main causative agents of ALI and ARDS in diverse clinical settings. Given the anti-inflammatory role of the cannabinoid-2 receptor (CB2R), the effect of CB2R activation in the regulation of PA-induced ALI and inflammation was tested in a mouse model as an alternative to conventional antibiotic therapy. METHODS: In order to activate CB2R, a selective synthetic agonist, JWH133, was administered intraperitoneally (i.p.) to C57BL/6J mice. Furthermore, SR144528 (a selective CB2R antagonist) was administered in combination with JWH133 to test the specificity of the CB2R-mediated effect. PA was administered intratracheally (i.t.) for induction of pneumonia in mice. At 24 h after PA exposure, lung mechanics were measured using the FlexiVent system. The total cell number, protein content, and neutrophil population in the bronchoalveolar lavage fluid (BALF) were determined. The bacterial load in the whole lung was also measured. Lung injury was evaluated by histological examination and PA-induced inflammation was assessed by measuring the levels of BALF cytokines and chemokines. Neutrophil activation (examined by immunofluorescence and immunoblot) and PA-induced inflammatory signaling (analyzed by immunoblot) were also studied. RESULTS: CB2R activation by JWH133 was found to significantly reduce PA-induced ALI and the bacterial burden. CB2R activation also suppressed the PA-induced increase in immune cell infiltration, neutrophil population, and inflammatory cytokines. These effects were abrogated by a CB2R antagonist, SR144528, further confirming the specificity of the CB2R-mediated effects. CB2R-knock out (CB2RKO) mice had a significantly higher level of PA-induced inflammation as compared to that in WT mice. CB2R activation diminished the excess activation of neutrophils, whereas mice lacking CB2R had elevated neutrophil activation. Pharmacological activation of CB2R significantly reduced the PA-induced NF-κB and NLRP3 inflammasome activation, whereas CB2KO mice had elevated NLRP3 inflammasome. CONCLUSION: Our findings indicate that CB2R activation ameliorates PA-induced lung injury and inflammation, thus paving the path for new therapeutic avenues against PA pneumonia.


Assuntos
Lesão Pulmonar Aguda , Canabinoides , Inflamação , Infecções por Pseudomonas , Receptor CB2 de Canabinoide , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/prevenção & controle , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Citocinas , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pseudomonas aeruginosa , Receptores de Canabinoides , Síndrome do Desconforto Respiratório , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/imunologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Modelos Animais de Doenças
8.
Neurosci Lett ; 788: 136852, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36028004

RESUMO

Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.


Assuntos
Infecções por HIV , HIV-1 , Transtornos Relacionados ao Uso de Opioides , Animais , Corpo Estriado/metabolismo , Dextranos , Fluoresceínas , HIV-1/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Ácidos Sulfônicos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
9.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625897

RESUMO

Sleep disorders have high comorbidity with drug addiction and function as major risk factors for developing drug addiction. Recent studies have indicated that both sleep disturbance (SD) and abused drugs could activate microglia, and that increased neuroinflammation plays a critical role in the pathogenesis of both diseases. Whether microglia are involved in the contribution of chronic SDs to drug addiction has never been explored. In this study, we employed a mouse model of sleep fragmentation (SF) with cocaine treatment and examined their locomotor activities, as well as neuroinflammation levels and dopamine signaling in the striatum, to assess their interaction. We also included mice with, or without, SF that underwent cocaine withdrawal and challenge. Our results showed that SF significantly blunted cocaine-induced locomotor stimulation while having marginal effects on locomotor activity of mice with saline injections. Meanwhile, SF modulated the effects of cocaine on neuroimmune signaling in the striatum and in ex vivo isolated microglia. We did not observe differences in dopamine signaling in the striatum among treatment groups. In mice exposed to cocaine and later withdrawal, SF reduced locomotor sensitivity and also modulated neuroimmune and dopamine signaling in the striatum. Taken together, our results suggested that SF was capable of blunting cocaine-induced psychoactive effects through modulating neuroimmune and dopamine signaling. We hypothesize that SF could affect neuroimmune and dopamine signaling in the brain reward circuitry, which might mediate the linkage between sleep disorders and drug addiction.

10.
Microbiol Spectr ; 10(1): e0085321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019681

RESUMO

Although combination antiretroviral therapy (cART) can suppress the replication of HIV, the virus persists and rebounds when treatment is stopped. To find a cure that can eradicate latent reservoir, a method should be able to quantify the lingering HIV. Unlike other digital PCR technologies, droplet digital PCR (ddPCR), provides absolute quantification of target DNA molecules using fluorescent dually labeled probes by massively partitioning the sample into droplets. ddPCR enables exquisitely sensitive detection and quantification of viral DNA from very limiting clinical samples, including brain tissues. We developed and optimized duplex ddPCR assays for the detection and quantification of HIV proviral DNA and integrated DNA in the brain of HIV-1-infected patients. We have applied these approaches to successfully analyze 77 human brain tissues obtained from 27 HIV-1-infected individuals, either fully virally suppressed or with encephalitis, and were able to quantify low levels of viral DNA. Further developments and advancement of digital PCR technology is promising to aid in accurate quantification and characterization of the persistent HIV reservoir. IMPORTANCE We developed ddPCR assays to quantitatively measure HIV DNA and used this ddPCR assays to detect and quantitatively measure HIV DNA in the archived brain tissues from HIV patients. The tissue viral loads assessed by ddPCR was highly correlative with those assessed by qPCR. HIV DNA in the brain was detected more frequently by ddPCR than by qPCR. ddPCR also showed higher sensitivity than qPCR since ddPCR detected HIV DNA signals in some tissues from virally suppressed individuals while qPCR could not.


Assuntos
Encéfalo/virologia , Encefalite/virologia , Infecções por HIV/virologia , HIV-1/genética , Reação em Cadeia da Polimerase/métodos , Provírus/genética , Viremia/virologia , DNA Viral/genética , Encefalite/imunologia , Infecções por HIV/imunologia , HIV-1/isolamento & purificação , HIV-1/fisiologia , Humanos , Provírus/isolamento & purificação , Provírus/fisiologia , Carga Viral , Viremia/imunologia , Integração Viral
11.
Life (Basel) ; 11(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685469

RESUMO

In this study, we investigated autophagy, glial activation status, and corticotropin releasing factor (CRF) signaling in the brains of mice after 5 days of sleep fragmentation (SF). Three different brain regions including the striatum, hippocampus, and frontal cortex were selected for examination based on roles in sleep regulation and sensitivity to sleep disruption. For autophagy, we monitored the levels of various autophagic induction markers including beclin1, LC3II, and p62 as well as the levels of lysosomal associated membrane protein 1 and 2 (LAMP1/2) and the transcription factor EB (TFEB) which are critical for lysosome function and autophagy maturation stage. For the status of microglia and astrocytes, we determined the levels of Iba1 and GFAP in these brain regions. We also measured the levels of CRF and its cognate receptors 1 and 2 (CRFR1/2). Our results showed that 5 days of SF dysregulated autophagy in the striatum and hippocampus but not in the frontal cortex. Additionally, 5 days of SF activated microglia in the striatum but not in the hippocampus or frontal cortex. In the striatum, CRFR2 but not CRFR1 was significantly increased in SF-experienced mice. CRF did not alter its mRNA levels in any of the three brain regions assessed. Our findings revealed that autophagy processes are sensitive to short-term SF in a region-specific manner and suggest that autophagy dysregulation may be a primary initiator for brain changes and functional impairments in the context of sleep disturbances and disorders.

12.
EMBO Rep ; 22(8): e51978, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34232545

RESUMO

Zika virus (ZIKV) infection during pregnancy is linked to various developmental brain disorders. Infants who are asymptomatic at birth might have postnatal neurocognitive complications. However, animal models recapitulating these neurocognitive phenotypes are lacking, and the circuit mechanism underlying behavioral abnormalities is unknown. Here, we show that ZIKV infection during mouse pregnancy induces maternal immune activation (MIA) and leads to autistic-like behaviors including repetitive self-grooming and impaired social memory in offspring. In the medial prefrontal cortex (mPFC), ZIKV-affected offspring mice exhibit excitation and inhibition imbalance and increased cortical activity. This could be explained by dysregulation of inhibitory neurons and synapses, and elevated neural activity input from mPFC-projecting ventral hippocampus (vHIP) neurons. We find structure alterations in the synaptic connections and pattern of vHIP innervation of mPFC neurons, leading to hyperconnectivity of the vHIP-mPFC pathway. Decreasing the activity of mPFC-projecting vHIP neurons with a chemogenetic strategy rescues social memory deficits in ZIKV offspring mice. Our studies reveal a hyperconnectivity of vHIP to mPFC projection driving social memory deficits in mice exposed to maternal inflammation by ZIKV.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Feminino , Hipocampo , Inflamação , Camundongos , Córtex Pré-Frontal , Gravidez
13.
Front Immunol ; 12: 672415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093573

RESUMO

Humanized bone marrow-liver-thymic (hu-BLT) mice develop a functional immune system in periphery, nevertheless, have a limited reconstitution of human myeloid cells, especially microglia, in CNS. Further, whether bone marrow derived hematopoietic stem and progenitor cells (HSPCs) can enter the brain and differentiate into microglia in adults remains controversial. To close these gaps, in this study we unambiguously demonstrated that human microglia in CNS were extensively reconstituted in adult NOG mice with human interleukin-34 transgene (hIL34 Tg) from circulating CD34+ HSPCs, nonetheless not in hu-BLT NOG mice, providing strong evidence that human CD34+ HSPCs can enter adult brain and differentiate into microglia in CNS in the presence of hIL34. Further, the human microglia in the CNS of hu-BLT-hIL34 NOG mice robustly supported HIV-1 infection reenforcing the notion that microglia are the most important target cells of HIV-1 in CNS and demonstrating its great potential as an in vivo model for studying HIV-1 pathogenesis and evaluating curative therapeutics in both periphery and CNS compartments.


Assuntos
Modelos Animais de Doenças , Infecções por HIV/virologia , Transplante de Células-Tronco Hematopoéticas/métodos , Interleucinas , Microglia/virologia , Animais , Encéfalo/virologia , Diferenciação Celular , HIV-1 , Humanos , Interleucinas/genética , Camundongos , Camundongos Transgênicos , Microglia/citologia , Transgenes
14.
Cells ; 10(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919664

RESUMO

Pericytes are increasingly recognized as being important in the control of blood-brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse-human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.


Assuntos
Barreira Hematoencefálica/patologia , Homeostase , Doenças do Sistema Nervoso/patologia , Pericitos/patologia , Humanos , Macrófagos/patologia , Miócitos de Músculo Liso/patologia
15.
AIDS ; 35(7): 1021-1029, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33710021

RESUMO

OBJECTIVES: CD4+ T-cell decline and increasing virus levels are considered hallmarks of HIV/AIDS pathogenesis but we previously demonstrated in rhesus macaques that tissue macrophage destruction by simian immunodeficiency virus (SIV) infection associated with increased monocyte turnover also appear to impact pathogenesis. It remains unclear, however, which factors best predict onset of terminal disease progression and survival time. The objective of this study, therefore, was to directly compare these co-variates of infection for predicting survival times in retrospective studies of SIV/simian-HIV (SHIV)-infected adult rhesus macaques. METHODS: Rhesus macaques were infected with various strains of SIV/SHIV and evaluated longitudinally for monocyte turnover, CD4+ T-cell loss, plasma viral load, and SIV/SHIV strain. Correlation analyses and machine learning algorithm modeling were applied to compare relative contributions of each of the co-variates to survival time. RESULTS: All animals with AIDS-related clinical signs requiring euthanasia exhibited increased monocyte turnover regardless of CD4+ T-cell level, viral strain, or plasma viral load. Regression analyses and machine learning algorithms indicated a stronger correlation and contribution between increased monocyte turnover and reduced survival time than between CD4+ T-cell decline, plasma viral load, or virus strain and reduced survival time. Decision tree modeling categorized monocyte turnover of 13.2% as the initial significant threshold that best predicted decreased survival time. CONCLUSION: These results demonstrate that monocytes/macrophages significantly affect HIV/SIV pathogenesis outcomes. Monocyte turnover analyses are not currently feasible in humans, so there is a need to identify surrogate biomarkers reflecting tissue macrophage damage that predict HIV infection disease progression.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Progressão da Doença , Infecções por HIV/complicações , Humanos , Macaca mulatta , Estudos Retrospectivos , Carga Viral
16.
J Cancer Sci Clin Ther ; 5(4): 434-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35340804

RESUMO

Stress granules (SGs) are cytoplasmic aggregates to reprogram gene expression in response to cellular stimulus. Here, we show that while SGs are being assembled in response to clotrimazole, an antifungal medication heterogeneous nuclear ribonucleoprotein (hnRNP) K, an RNA-binding protein that mediates translational silencing of mRNAs, is rapidly accumulated in SGs in U-2OS osteosarcoma cells. Forced expression of hnRNP K induces resistance to clotrimazole-induced apoptosis. Erk/MAPK is transiently activated in response to clotrimazole, and pharmacological suppression of the Erk/MAPK pathway sensitizes the cells to apoptosis. Inhibition of the Erk/MAPK pathway promotes the assembly of SGs. These results suggest that dynamic cytoplasmic formation of SGs and hnRNP K relocation to SGs may be defensive mechanisms against clotrimazole-induced apoptosis in U-2OS osteosarcoma cells.

17.
Neurobiol Aging ; 96: 128-136, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002766

RESUMO

Lax phenotypic characterization of these morphologically distinct pericytes has delayed our understanding of their role in neurological disorders. We herein establish markers which uniquely distinguish different subpopulations of human brain microvascular pericytes and characterize them independently from cerebrovascular smooth muscle cells. Furthermore, we begin to elucidate the roles of these subsets in blood-brain barrier (BBB) breakdown by studying natural aging and simian immunodeficiency virus (SIV) infection in rhesus macaques. We demonstrate that the main type-1 pericyte subpopulation in the brain of young uninfected adults is positive for platelet-derived growth factor receptor-ß (PDGFRB) and negative for α-smooth muscle actin (SMA) and myosin heavy chain 11 (MYH11), whereas PDGFRB+/SMA+/MYH11- (type-2) pericytes are found more frequently in older adults and are associated with SIV infection and progression. Interestingly, we find a strong positive correlation between the degree of BBB breakdown and the percentage of type-2 pericytes regardless of age or SIV status. Taken together, our findings suggest that type-2 pericytes may be a cellular biomarker related to BBB disruption independent of disease status.


Assuntos
Envelhecimento/patologia , Barreira Hematoencefálica/patologia , Pericitos/classificação , Pericitos/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia , Actinas/metabolismo , Adulto , Animais , Encéfalo/irrigação sanguínea , Humanos , Macaca mulatta , Microvasos/citologia , Cadeias Pesadas de Miosina/metabolismo , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Adulto Jovem
18.
Front Pediatr ; 8: 388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766187

RESUMO

Background: Clinical measurements commonly used to evaluate overall health of laboratory animals including complete blood count, serum chemistry, weight, and immunophenotyping, differ with respect to age, development, and environment. This report provides comprehensive clinical and immunological reference ranges for pediatric rhesus macaques over the first year of life. Methods: We collected and analyzed blood samples from 151 healthy rhesus macaques, aged 0-55 weeks, and compared mother-reared infants to two categories of nursery-reared infants; those on an active research protocol and those under derivation for the expanded specific-pathogen-free breeding colony. Hematology was performed on EDTA-anticoagulated blood using a Sysmex XT2000i, and serum clinical chemistry was performed using the Beckman AU480 chemistry analyzer. Immunophenotyping of whole blood was performed with immunofluorescence staining and subsequent flow cytometric analysis on a BD LSRFortessa. Plasma cytokine analysis was performed using a Millipore multiplex Luminex assay. Results: For hematological and chemistry measurements, pediatric reference ranges deviate largely from adults. Comparison of mother-reared and nursery-reared animals revealed that large differences depend on rearing conditions and diet. Significant differences found between two nursery-reared cohorts (research and colony animals) indicate large influences of experimental factors and anesthetic events on these parameters. Immune cells and cytokine responses presented with distinct patterns for infants depending on age, birth location, and rearing conditions. Conclusions: Our results illustrate how the immune system changed over time and that there was variability among pediatric age groups. Reference ranges of results reported here will support interpretations for how infection and treatment may skew common immune correlates used for assessment of pathology or protection in research studies as well as help veterinarians in the clinical care of infant non-human primates. We highlighted the importance of using age-specific reference comparisons for pediatric studies and reiterated the utility of rhesus macaques as a model for human studies. Given the rapid transformation that occurs in multiple tissue compartments after birth and cumulative exposures to antigens as individuals grow, a better understanding of immunological development and how this relates to timing of infection or vaccination will support optimal experimental designs for developing vaccines and treatment interventions.

19.
Brain Pathol ; 30(6): 1017-1027, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32585067

RESUMO

Zika virus (ZIKV) is a flavivirus that can cause neuropathogenesis in adults and fetal neurologic malformation following the infection of pregnant women. We used a nonhuman primate model, the Indian-origin Rhesus macaque (IRM), to gain insight into virus-associated hallmarks of ZIKV-induced adult neuropathology. We find that the virus causes prevalent acute and chronic neuroinflammation and chronic disruption of the blood-brain barrier (BBB) in adult animals. ZIKV infection resulted in specific short- and long-term augmented expression of the chemokine CXCL12 in the central nervous system (CNS)of adult IRMs. Moreover, CXCL12 expression persists long after the initial viral infection is apparently cleared. CXCL12 plays a key role both in regulating lymphocyte trafficking through the BBB to the CNS and in mediating repair of damaged neural tissue including remyelination. Understanding how CXCL12 expression is controlled will likely be of central importance in the definition of ZIKV-associated neuropathology in adults.


Assuntos
Barreira Hematoencefálica/virologia , Encéfalo/virologia , Quimiocina CXCL12/metabolismo , Encefalite/virologia , Regulação para Cima , Infecção por Zika virus/patologia , Zika virus/isolamento & purificação , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Feminino , Macaca mulatta , Masculino , Gravidez , Infecção por Zika virus/metabolismo
20.
Int Neurourol J ; 24(1): 29-40, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32252184

RESUMO

PURPOSE: Pioglitazone, an antihyperglycemic drug, is widely used in diabetes mellitus patients with insulin resistance. Although pioglitazone is known to have a potential link to bladder cancer (BC), there have been contradictory results. This present study is designed to understand the regulatory mechanisms that drive the effects of pioglitazone on the bladder epithelial cells. METHODS: Labeled liquid chromatography-tandem mass spectrometry-based proteomics profiling characterized the global proteomes of normal human bladder epithelial cells treated with or without pioglitazone. RESULTS: This approach detected approximately 5,769 proteins in total. Of those 5,769 proteins, 124 were identified as being differentially expressed due to pioglitazone treatment. Further analysis identified 95 upregulated and 29 downregulated proteins (absolute log2 fold change >0.58 and P-value<0.05). The following functional gene enrichment analysis suggested that pioglitazone may be altering a few select biological processes, such as gene/chromatin silencing, by downregulating BMI1 (B lymphoma Mo-MLV insertion region 1 homolog), a polycomb complex protein. Further cell-based assays showed that cell adhesion molecules, epithelial-mesenchymal transition markers, and major signaling pathways were significantly downregulated by pioglitazone treatment. CONCLUSION: These experimental results revealed the proteomic and biological alterations that occur in normal bladder cells in response to pioglitazone. These findings provided a landscape how bladder proteome is influenced by pioglitazone, which suggests the potential adverse effects of diabetes drugs and their links to bladder dysfunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...